四边形abcd内接于圆o,ac为其中一条对角线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:37:08
设圆心O到AC的距离为a圆心O到BD的距离为b则AK=√(R^2-a^2)+bCK=√(R^2-a^2)-bBK=√(R^2-b^2)+aDK=√(R^2-b^2)-aAK²+BK²
再问:能解释下角AOB=90?因为角ACB=45,所以角AOB=90中间的过程不太懂?再答:角ACB=45是圆周角,它所对的弧是弧AB,而角AOB是弧AB所对的圆心角,所以角A0B=90度再答:一条弧
百度不让发...说有不合适的词语..发你消息里了
根据余弦定理:AC^2=AB^2+BC^2-2AB*BC*cosB=3^2+1^2-2*3*1*cosB=10-6cosBAC^2=DA^2+DC^2-2DA*DC*cosD=2^2+2^2-2*2*
∵∠EBC=∠CAD(同弧上的圆周角相等)=∠CAB(已知CA是角平分线),∠BCE是公共角;∴△ABC∽△BCE(三个角对应相等的二△相似).
对于正方形“内接于”圆,说明是在圆的内部,“外切于”圆,说明是在圆的外部;对于圆“内切于”正方形,说明在正方形内部;“外接于”正方形,说明在正方形外部.四边形内接于圆,等同于,圆外接于四边形,圆内切于
∵AC平分∠BAD∴∠BAC=∠DAC∵∠DBC=∠DAC∴∠BAC=∠DBC又∵∠ACB=∠BCE∴⊿ABC∽⊿BEC
已知AC⊥BD,则∠CAD+∠ADB=90°,得∠COD+∠AOB=2∠CAD+2∠ADB=180°.作OF⊥AB垂足为F,连接OB、OC,则∠COE+∠BOF=1/2∠COD+1/2∠AOB=90°
证明:作直径AG,连接BG,则BG⊥AB∵OE⊥AB于E,∴E是AB的中点∴OE=BG/2又AC⊥BD,BG⊥AB,∠ADP=∠BGA∴CD=BG∴OE=BG/2=CD/2证毕!
证明:∠ABC+∠D=180°(圆内接四边形对角互补);∠ABC+∠EBC=180°(平角定义).∴∠EBC=∠D.(等式的性质)又AC平分∠BAD;AC=CE,则∠E=∠EAC=∠CAD.所以,⊿A
解题思路:本题考察了切线的判定方法,及已知特殊线段的长度,得到三角形ODC是等边三角形,再结合扇形面积公式,等边三角形面积公式,求得阴影部分面积。解题过程:
(1)延长CO交AE于M因为弧AC=弧CE,则∠MAC=∠ABC又因为△BCD∽三角形BAC则∠BCD=∠BAC=∠MCA则△BCD∽△ACM所以∠BDC=∠CMA=90°所以CM⊥AE,也即CO⊥A
再答:请采纳哦~O(∩_∩)O再问:图不是很清楚再答:连接BO并延长交AD于H.∵△ABD是⊙O的内接三角形,∴OB平分∠ABD,∵AB=BD,O是圆心,∴BH⊥AD.又∵∠ADC=90°,∴BH∥C
就是说一个四边形的四个定点到圆的圆心的距离相等切等于圆的半径圆心是O这个题有两个答案一个是圆心的四边形内答案是50度圆心在四边形外答案是230度所以答案为230或50度
设AE=x,则CE=x,AB=√2x,AC=2x因为BD=2√3,BF=4,所以∠F=60°,则∠BCD=60°因为AB:AE=√2,AC:AB=√2,所以AB:AE=AC:AB所以△ABE∽△ACB
设BC=X,CD=y,∵△APB∽△DPC,△APD∽△BPC∴AB∶CD=AD∶BC=AP∶PC=(3-0.6)∶0.6=4∶1∴AB=4CD=4y,AD=4BC=4x.作BE⊥AD,交AD于E点,
AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/
如图,连结BO,并延长交AD于Q,连OD,则BQ为AD垂直平分线,且△OAB≌ △ODB(三边相等), ∴∠ODP=∠OAB=∠CDP∴ 在△CDO中&nbs
证明:连接BO并延长BO交圆O于E,连接AE、DE∵直径BE∴∠BAE=∠BDE=90∵AC⊥BD∴AC∥DE∴弧AD=弧CE∵弧AE=弧AD+弧DE,弧CD=弧CE+弧DE∴弧AE=弧CD∴AE=C