四边形abcd内接于圆o,ac为其中一条对角线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:37:08
四边形abcd内接于圆o,ac为其中一条对角线
如图 内接于圆O的四边形ABCD的对角线AC与BD垂直相交于点K 设圆O 的半径为R 求证AK^2+BK^2+CK^2+

设圆心O到AC的距离为a圆心O到BD的距离为b则AK=√(R^2-a^2)+bCK=√(R^2-a^2)-bBK=√(R^2-b^2)+aDK=√(R^2-b^2)-aAK²+BK²

如图:四边形ABCD内接于圆O,已知AD=10,AC=8,DC=6 并且角ACB=45度,连接OB交AC于点E

再问:能解释下角AOB=90?因为角ACB=45,所以角AOB=90中间的过程不太懂?再答:角ACB=45是圆周角,它所对的弧是弧AB,而角AOB是弧AB所对的圆心角,所以角A0B=90度再答:一条弧

如图,已知四边形ABCD内接于圆O,E在DC的延长线上,且弧AB=弧BD,BM⊥AC于M.

百度不让发...说有不合适的词语..发你消息里了

已知四边形ABCD内接于圆O,AB=3 BC=1 AD=2 (1)求AC长 (2)求四边形abcd面积 (3)求圆0半径

根据余弦定理:AC^2=AB^2+BC^2-2AB*BC*cosB=3^2+1^2-2*3*1*cosB=10-6cosBAC^2=DA^2+DC^2-2DA*DC*cosD=2^2+2^2-2*2*

已知:四边形ABCD内接于圆O,连接AC和BD交于点E,且AC平分∠BAD.证明三角形ABC相似三角形bCE

∵∠EBC=∠CAD(同弧上的圆周角相等)=∠CAB(已知CA是角平分线),∠BCE是公共角;∴△ABC∽△BCE(三个角对应相等的二△相似).

已知四边形ABCD内接于圆O

对于正方形“内接于”圆,说明是在圆的内部,“外切于”圆,说明是在圆的外部;对于圆“内切于”正方形,说明在正方形内部;“外接于”正方形,说明在正方形外部.四边形内接于圆,等同于,圆外接于四边形,圆内切于

已知四边形ABCD内接于圆O,连接AC和BD交于点E,且AC平分角BAD,求证△ABC相似于△BCE

∵AC平分∠BAD∴∠BAC=∠DAC∵∠DBC=∠DAC∴∠BAC=∠DBC又∵∠ACB=∠BCE∴⊿ABC∽⊿BEC

已知四边形ABCD内接于圆O,AC⊥BD,OE⊥CD于点E 求证:OE=AB/2

已知AC⊥BD,则∠CAD+∠ADB=90°,得∠COD+∠AOB=2∠CAD+2∠ADB=180°.作OF⊥AB垂足为F,连接OB、OC,则∠COE+∠BOF=1/2∠COD+1/2∠AOB=90°

已知四边形ABCD内接于圆O,AC⊥BD,OE⊥AB于点E

证明:作直径AG,连接BG,则BG⊥AB∵OE⊥AB于E,∴E是AB的中点∴OE=BG/2又AC⊥BD,BG⊥AB,∠ADP=∠BGA∴CD=BG∴OE=BG/2=CD/2证毕!

已知四边形ABCD内接于圆O,AC平分∠BAD,AB与DC的延长线交于点E,AC=CE.求AD=BE

证明:∠ABC+∠D=180°(圆内接四边形对角互补);∠ABC+∠EBC=180°(平角定义).∴∠EBC=∠D.(等式的性质)又AC平分∠BAD;AC=CE,则∠E=∠EAC=∠CAD.所以,⊿A

如图,四边形ABCD是圆O的内接四边形,AC为直径,弧BD=弧AD,DE垂直于BC,垂足为E. (1)判断直线ED与圆O

解题思路:本题考察了切线的判定方法,及已知特殊线段的长度,得到三角形ODC是等边三角形,再结合扇形面积公式,等边三角形面积公式,求得阴影部分面积。解题过程:

初三关于圆的数学四边形ABCD内接于圆O,弧AC=弧CE,AB是圆O的直径,CD⊥AB于D,连CO.①求证:CO⊥AE②

(1)延长CO交AE于M因为弧AC=弧CE,则∠MAC=∠ABC又因为△BCD∽三角形BAC则∠BCD=∠BAC=∠MCA则△BCD∽△ACM所以∠BDC=∠CMA=90°所以CM⊥AE,也即CO⊥A

如图,已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,对角线AC和BD的交点是P,AB=BD,且PC=0.6,

再答:请采纳哦~O(∩_∩)O再问:图不是很清楚再答:连接BO并延长交AD于H.∵△ABD是⊙O的内接三角形,∴OB平分∠ABD,∵AB=BD,O是圆心,∴BH⊥AD.又∵∠ADC=90°,∴BH∥C

四边形ABCD内接于圆O若∠BOD=100°则∠DAB

就是说一个四边形的四个定点到圆的圆心的距离相等切等于圆的半径圆心是O这个题有两个答案一个是圆心的四边形内答案是50度圆心在四边形外答案是230度所以答案为230或50度

四边形ABCD内接于圆O,对角线AC,BD相交于E,AE=CE,AB=√2AE,BD=2倍根号3,求四边形ABCD的面积

设AE=x,则CE=x,AB=√2x,AC=2x因为BD=2√3,BF=4,所以∠F=60°,则∠BCD=60°因为AB:AE=√2,AC:AB=√2,所以AB:AE=AC:AB所以△ABE∽△ACB

已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,AC与BD交于点P.已知AB=BD,且CP=0.6,求四边形A

设BC=X,CD=y,∵△APB∽△DPC,△APD∽△BPC∴AB∶CD=AD∶BC=AP∶PC=(3-0.6)∶0.6=4∶1∴AB=4CD=4y,AD=4BC=4x.作BE⊥AD,交AD于E点,

如图,已知四边形ABCD内接于直径为3的圆O

AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/

已知四边形ABCD内接于直径为3的圆O,

如图,连结BO,并延长交AD于Q,连OD,则BQ为AD垂直平分线,且△OAB≌ △ODB(三边相等),  ∴∠ODP=∠OAB=∠CDP∴ 在△CDO中&nbs

已知四边形ABCD内接于圆O,对角线AC⊥BD,F为线段AB的中点,求证:OF=1/2CD

证明:连接BO并延长BO交圆O于E,连接AE、DE∵直径BE∴∠BAE=∠BDE=90∵AC⊥BD∴AC∥DE∴弧AD=弧CE∵弧AE=弧AD+弧DE,弧CD=弧CE+弧DE∴弧AE=弧CD∴AE=C