四边形abcd内接于圆o对角线ac为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:10:13
设圆心O到AC的距离为a圆心O到BD的距离为b则AK=√(R^2-a^2)+bCK=√(R^2-a^2)-bBK=√(R^2-b^2)+aDK=√(R^2-b^2)-aAK²+BK²
显然OM垂直于AB,所以只要证明NP垂直于AB就行了,角BAP=角PDC=0.5*角PNC(圆周角=一般的圆心角)角APT=角NPC=角NCP(PNC是等腰三角形)所以角BAP+角APT=0.5*角P
因为四边形ABCD内接于圆O,设钝角BOD为角1较大的角BOD为角2所以角1=2角A角2=2角C所以角1:角1=1:2而角1+角2=360°所以角BOD=120°
对于正方形“内接于”圆,说明是在圆的内部,“外切于”圆,说明是在圆的外部;对于圆“内切于”正方形,说明在正方形内部;“外接于”正方形,说明在正方形外部.四边形内接于圆,等同于,圆外接于四边形,圆内切于
∵AC平分∠BAD∴∠BAC=∠DAC∵∠DBC=∠DAC∴∠BAC=∠DBC又∵∠ACB=∠BCE∴⊿ABC∽⊿BEC
证明:作直径AG,连接BG,则BG⊥AB∵OE⊥AB于E,∴E是AB的中点∴OE=BG/2又AC⊥BD,BG⊥AB,∠ADP=∠BGA∴CD=BG∴OE=BG/2=CD/2证毕!
证明:因为矩形ABCD中,OA=OB=OC=OD所以点A、B、C、D在以O为圆心的圆上再问:请问我还可以问你别的题吗?好的话都选你再答:当然可以再问:已知在○O中,A,B是线段CD与圆的两个交点,且A
再答:请采纳哦~O(∩_∩)O再问:图不是很清楚再答:连接BO并延长交AD于H.∵△ABD是⊙O的内接三角形,∴OB平分∠ABD,∵AB=BD,O是圆心,∴BH⊥AD.又∵∠ADC=90°,∴BH∥C
就是说一个四边形的四个定点到圆的圆心的距离相等切等于圆的半径圆心是O这个题有两个答案一个是圆心的四边形内答案是50度圆心在四边形外答案是230度所以答案为230或50度
设AE=x,则CE=x,AB=√2x,AC=2x因为BD=2√3,BF=4,所以∠F=60°,则∠BCD=60°因为AB:AE=√2,AC:AB=√2,所以AB:AE=AC:AB所以△ABE∽△ACB
∠GFC=∠FEC+∠FCE,∠DGF=∠DAE+∠GEA,(三角形外角等于两不相邻内角之和)∠FEC=∠GEA,(EF平分∠AED)∠FCE=∠DAE,(圆内接四边形外角等于内对角)∠GFC=∠DG
设BC=X,CD=y,∵△APB∽△DPC,△APD∽△BPC∴AB∶CD=AD∶BC=AP∶PC=(3-0.6)∶0.6=4∶1∴AB=4CD=4y,AD=4BC=4x.作BE⊥AD,交AD于E点,
设BC=X,CD=y,∵△APB∽△DPC,△APD∽△BPC∴AB∶CD=AD∶BC=AP∶PC=(3-0.6)∶0.6=4∶1∴AB=4CD=4y,AD=4BC=4x.作BE⊥AD,交AD于E点,
AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/
如图,连结BO,并延长交AD于Q,连OD,则BQ为AD垂直平分线,且△OAB≌ △ODB(三边相等), ∴∠ODP=∠OAB=∠CDP∴ 在△CDO中&nbs
1.80°,100°2.120°3.85°4.5cm5.1/12,1/66.1/47.24cm,144πcm2(cm平方的平方怎么打?)8.π9.AO=BO(圆O半径)AC=OC(圆C半径)AE=ED
证明:连接BO并延长BO交圆O于E,连接AE、DE∵直径BE∴∠BAE=∠BDE=90∵AC⊥BD∴AC∥DE∴弧AD=弧CE∵弧AE=弧AD+弧DE,弧CD=弧CE+弧DE∴弧AE=弧CD∴AE=C