四边形ABCD是菱形对角线AC,BD相交于点O,DH垂直于AB喻点H求证
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:46:31
证明:平行四边形中,OA=OC=1/2AC=12OB=OD=1/2BD=5∵OA²+OB²=12²+5²=13²=AB²∴∠AOB=90°∴
证法如下:∵平行四边形是中心对称图形,O是AC中点,它就是对称中心.∴OF=OE(对称图形对应部分相等)已知AO=OC,EF⊥AC,∴AFCE是菱形.(对角线互相垂直且平分的四边形是菱形)------
因ABCD是正方形,AC垂直于BD且,AC=BD又因为EH垂直于AC,故EH平行于BD又因AEFC是菱形,故OE(AC)平行于BE(EF)且有AC=EF=FC=EF综合以上两个条件,得四边形OBEH为
证明:因为四边形AEFC是菱形,所以AC=FC因为四边形ABCD是正方形,所以AC=DB,BO=BD/2所以FC=DB=2BOBO垂直OH,EH垂直OE,BE∥OH所以EH=BO所以EH=1/2FC
本题有结论:∠CAE=30°.理由:∵ABCD是正方形,∴OB=1/2AC,OB⊥AC,∵ABFC是菱形,∴AE=AC,AC∥BF,∵EH⊥AC,∴四边形OBEH是矩形,∴EH=OB,∴tan∠EAH
正方形可知AB=BC=CD=AD∠BAC=∠DAC=∠BCA=∠DCA=45°又有题知AE=CF有边角边SAS可知△ABE=△BCF=△CFD=△AED所以BF=FD=DE=EB四条边都相等的四边形为
∵四边形ABCD是正方形∴AD=BC∵AC是对角线∴∠DAC等于∠ACB∵AE=CF∴△ADE≌BFC∴BF=ED以此类推证出EB=BF=DF=ED∴四边形BFDE是菱形
在菱形ABCD中OA=OB=OC=OD又DE//AC,CE//BD∴DE//OCCE//OD∴四边形OCED为平行四边形又OC=OD∴四边形OCED为菱形(一组邻边相等的平行四边形是菱形)
解,正方形ABCD边长为6,则对角线长为6√2,即菱形BEFD边长为6√2,则菱形对角线长分别为6√2和6√6,面积=两条对角线乘积的1/2=36√3.
当四边形ABCD是菱形时则AO⊥BD角COD为90°因为DE∥ACCE∥BD所以四边形CEDO为矩形.当四边形ABCD是矩形时则OD=OC因为DE∥ACCE∥BD所以四边形CEDO为菱形
是菱形.∵AC平分∠DAB,∴∠DAC=∠BAC,∵DC‖AB,∴∠DCA=∠BAC=∠DAC,(两直线平行,内错角相等)∴AD=DC(等角对等边)∴平行四边形ABCD是菱形(有一组邻边相等的平行四边
填:对角线相等的四边形根据平行四边形的判定,可得四边形EFGH是平行四边形,又知它是菱形,则AC=BD所以只能推出一定是对角线相等的四边形
因为四边形AEFC是菱形所以AC=CF,AC//BF因为EH⊥AC所以∠OHE=∠HEB=90因为四边形ABCD是正方形所以AC=BD,AC⊥BD,AO=CO=BO=DO所以∠HOB=90所以四边形B
条件还差.ABCD是正方形好像你打错字了.很简单初二的题目?BE=ED=DF=FBAC垂直BD下面自己推
∵AB=CB=CD=AD,∠BAE=∠DAE=∠BCF=∠DCF=45°AE=AE=CF=CF∴△ABE≌△ADE≌△CBF≌△CDF∴BE=DE=BF=DF∴四边形EBFD是菱形
证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=12BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=9
ac与bd交于点o延长ad至点m使ad=dm,链接cm因为四边形ABCD是菱形,所以ao=oc又因为ad=dm所以od平行于cm,所以角acm=90度,设ac4xbd3x,(4x)的方+(3x)的方=
½bd=√﹙ab²-¼ac²﹚=√﹙13²-5²﹚=12㎝bd=24㎝面积=ac×bd÷2=10×12÷2=60㎝²
菱形的边长是20/4=5,对角线AC与BD垂直平分,在直角三角形AOD中,AD=5,OD=3,所以AO=4,所以AC=2*4=8\x0d菱形的面积是1/2*AC*BD=24,所以BD=24/5
∵∠ABC=60°,∠BAD=120°,四边形ABCD是菱形∴△ABC与△ADC是等边三角形又∵菱形的周长是36cm,AC=9cm∴AB=BC=CD=AD=9㎝又∵AC⊥BD于点O∴BD=2√[9