回归分析 f值 有限制吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:34:18
回归分析 f值 有限制吗
Excel回归分析中的F检验

这个F值不是用来检验R平方的.看图,不明白再来问我.再问:R的平方我明白,F检验是检验模型整体的显著性吗?R的平方只是检验模型的一个评价指标,它本身是不用检验的,是吗?再答:对的,但是我们在判断模型的

SPSS多远回归分析 F临界值的算法

k为自变量个数,n为样本含量n-k-1为自由度比如总共有10个人.则n=10每个人检测自变量x有:血压、体重、腹围.则k=3因变量y为:是否患有某病.需要做血压、体重、腹围和是否患有某病之间的回归关系

利用SPSS方差分析中,F值用来判断显著性,F值的大小有限制吗?过大是否没有意义?

F越大,越有显著性,F很大,没任何问题,好比就是P值很小,百万分之一,你能说P就有问题吗?这是一个道理的F的大小,你可以去查表,看F统计量的分布,等我经常帮别人做这类的数据分析的

多元回归分析和多元统计分析有什么差别?

回归是统计分析的一种,多元回归分析是多元统计分析的一种.

用SPSS做线性回归分析,怎么模型算可以用啊,到底是看F值还是SIG什么的,

要看sig值,那个就是P值,如果是小于0.001,一般情况下是显著的再问:不是说sig只要小于0.05就行么?再答:对的,看是在什么水平下,0.05也行再问:只要看sig么?其他值都不用看了?再答:是

spss中回归分析实例求助,这样的R值F值T值可以继续做下去吗?

F值和T值多少没有绝对的标准的.主要是看你的回归模型是否合理.在进行回归分析之后还要进行残差分析,看模型是否存在异方差,自相关,多重共线性等问题.若是存在异方差、自相关等问题,有可能会高估t值,F检验

spss 回归分析结果F的sig.0.

F检验说明你的众多自变量和你的因变形是有显著性影响的,可以做回归分析.但是并不是说每一个自变量都和因变量有显著性影响,所以要对每一个自变量T检验,T检验不合格说明该自变量对因变量没有显著性影响,一般做

一元线性回归分析有哪些优势与劣势?

一、概念:一元线性回归方程反应一个因变量与一个自变量之间的线性关系,当直线方程Y'=a+bx的a和b确定时,即为一元回归线性方程.  经过相关分析后,在直角坐标系中将大量数据绘制成散点图,这些点不在一

spss做回归分析,拟合度和F值都很低,是模型错了吗?要怎么处理啊

拟合度低问题不大关键是回归模型的检验即这里的sig是否小于0.05,如果是的话,就说明了这个回归模型可以用的,只是你目前这些自变量只能够解释那么多的再问:系数(a)模型非标准化系数标准系数共线性统计量

回归分析法和相关分析法有什么区别?

相关分析,是看2个因素之间的相关性,也就是2个因素之间是否有关联;如果计算出来是1,那么2个因素是完全正相关,如果是0,那么说明这2个因素完全不相关,如果是负数,那么说明2个因素是负相关.打个比方,身

再多元线性回归分析中,t检验与F检验有何不同

t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性.各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系

二元回归中F检验f值达到1000多,正常吗

很正常,说明模型拟合的好啊.很管用.

线性回归分析和指数回归分析有什么区别,如何使用?

回归模型一个是直线,一个是指数曲线,简单地说你的数据点画出来象直线就用线性回归...

spss回归分析中F值很大,怎样能够降低它的数值?

改数据就行啊再问:往哪个方向改啊再答:不显著的方向

spss回归分析的F检验值

你再用SPSS做回归时,在选择因变量与自变量的那个窗口的右边,有“选项”这个按钮,点进去有选择是0.05还是其他数值,默认的应该是0.05

回归分析 Logistic 回归分析

你先找到自变量和因变量,就可以直接利用SPSS中的曲线回归中logistic的模型拟合就可以了

回归分析中Durbin-Waston值是什么意思

判断数据是否独立的数值,2左右就是独立统计专业,为您服务

excel中指数回归分析与对数回归分析有什么区别?

有两种判断方法:一是根据散点图进行估计,二是逐个模型尝试、比较.如果比较不出来的话就选择用模型尝试.模型优劣的比较:一是直观地比较坐标图中的点线匹配效果,二是比较模型的拟合优度(R的平方值).只要模型

一元线性回归分析有什么特点

(1)两个变脸光之剑不是对等关系,进行回归分析时,应该先根据研究目的确定自变量和因变量(2)回归方程的作用在于给定自变量的值估计推算因变量的值,回归方程表明变量间的变动关系(3)回归方程中自变量的系数