回归分析F值的意思
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:13:31
这个F值不是用来检验R平方的.看图,不明白再来问我.再问:R的平方我明白,F检验是检验模型整体的显著性吗?R的平方只是检验模型的一个评价指标,它本身是不用检验的,是吗?再答:对的,但是我们在判断模型的
回归:根据日常的意思即可,比如最近的气温正在回归正常.因此回归的意思是有一条假设的或者说是理论的线性或非线性模型,然后通过回归的方法,则是将现有的数据向假设的模型拟合接近.这个就是回归的意思
常量sig值高于0.05这个回归仍然有效,这仅仅表明线性回归的截距项可以被设定为0,也就是经过原点.但是,如果你将截距项设为0,则该方程的拟合优度指标值(R的平方)将是不准确的,即使你重新拟合.再问:
k为自变量个数,n为样本含量n-k-1为自由度比如总共有10个人.则n=10每个人检测自变量x有:血压、体重、腹围.则k=3因变量y为:是否患有某病.需要做血压、体重、腹围和是否患有某病之间的回归关系
我看不懂这个表,你需要进一步解释再问:解释:一种疾病由两种因子判定,AIB1和HER-2,两种因子都有阳性(+)和阴性(-)两种状态,如下图,请帮我分别计算下面两表的logistic回归分析,要r值,
T是统计量的值,由于T分布的特性是:取值离远点越远,取到这个值的可能性越小.而在回归分析里,我们的检验的假设是“X的系数=0(当此时,X和Y无关)”,所以T值(的绝对值)越大越好,因为越大,就说明检验
F值和T值多少没有绝对的标准的.主要是看你的回归模型是否合理.在进行回归分析之后还要进行残差分析,看模型是否存在异方差,自相关,多重共线性等问题.若是存在异方差、自相关等问题,有可能会高估t值,F检验
简单的说,重点是两个第一是X的系数-0,226,说明金价和FTSE100负相关,P值为0.041,说明在5%水平负相关关系显著;第二是AdjustedR方,0.045,说明这个回归只能解释4.5%的数
F检验说明你的众多自变量和你的因变形是有显著性影响的,可以做回归分析.但是并不是说每一个自变量都和因变量有显著性影响,所以要对每一个自变量T检验,T检验不合格说明该自变量对因变量没有显著性影响,一般做
1、R-squared与AdjustedR-squared是方程拟合程度的度量,达到0.7已经可以了;2、Akaikeinfocriterion和Schwarzcriterion等位信息量值,用来比较
这样好.系数为零的原假设很难成立.
统计可以用很科学很复杂的方式去处理,也可以简单化的处理,主要看你数据的用途,如果不是需要发表论文之类,可以按以下简单方式来操作,spss的回归过程,已经包含了验证.1、在spss里把A、B、C、D四个
1.写出拟合方程Y=0.0439636-0.1104272ret+0.3015505drret+0.0003205vr+0.0130717drvr+0.0061625retvr+0.0501226dr
说明,回归系数无效(不显著).回归方程未通过检验,不可用.
min最小值
改数据就行啊再问:往哪个方向改啊再答:不显著的方向
你再用SPSS做回归时,在选择因变量与自变量的那个窗口的右边,有“选项”这个按钮,点进去有选择是0.05还是其他数值,默认的应该是0.05
你先找到自变量和因变量,就可以直接利用SPSS中的曲线回归中logistic的模型拟合就可以了
你直接用SPSS的菜单上的回归就可以做了,有向导的,你跟着做就是了,最后就会得到结果,至于99.7%的参数中间有一步你可以自己改参数的
不能拒绝二次adm项系数为0的假设所以不显著你可以看看二次回归和一次回归R方的差异如果不大说明一次v即可.再问:但是R^2很大啊。。。再答:一次和二次的R方差异是多少?再问:相差不大。。。