回归分析R方有意义拟合度高但是常量和系数为什么都大于0.05
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:10:14
我是高三之后才总结出学习数学的方法的,首先你必须对自己有信心.你得坚信我能学好数学.其次你说的题海战术,这是一个历史悠久的战术了,为什么这么多年还没有淘汰,就是它适合大多数的学生,你做题做的多,见得就
logistic无需计算拟合优度主要看aic等值我替别人做这类的数据分析蛮多的
multipleR
对!SPSS回归分析中AdjR方指的是调整R方
线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛.有一类模型,其回归参数不是线性的,也不能通过转换的方法将其变为线性的参数.这类模型
方偏小,理论上是不合理的,但很难说是否可行,因为这不是检验回归方程的唯一标准,建议结合F检验和T检验来确定.
就是表示模型拟合的程度logistic回归不是主要依靠这两个指标来衡量模型好坏的我替别人做这类的数据分析蛮多的再问:那时通过什么指标来衡量的呢?
拟合度低问题不大关键是回归模型的检验即这里的sig是否小于0.05,如果是的话,就说明了这个回归模型可以用的,只是你目前这些自变量只能够解释那么多的再问:系数(a)模型非标准化系数标准系数共线性统计量
有点低.你有几个变量再问:四个自变量,两个控制变量,两个因变量。拟合度和变量个数有关系?再答:如果是管理学的实证分析拟合度不是最重要的问题再问:这样啊,我是学管理的,顺便问一下,用spss做回归分析的
这个问题描述得不够详细. 首先,你采用的是什么数据?如果是时间序列,那么有没有考虑序列的平稳性和协整性?只有协整的序列拿来做简单回归,系数才有意义.如果不协整,即便R方很大,也是为回归,系数没有意义
按照回归的表现形式:线性回归与非线性回归研究一个因变量与一个自变量之间的相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续.相关
推荐你使用一个函数nlinfit,我简单给你介绍一下使用方法,以你的模型2为例:第一步:你需要建立一个function文件,名字随便,这里我们命名为"hougen",在这个文件内,你要把模型二描述清楚
做有序回归,不是去看R2,没用的coxandsnell是伪R2,已经不是你理解的R2了我经常帮别人做这类的数据统计分析再问:那应该看哪个呢?可不可以说一下这三个表分别表示什么意思呢?
确实有“相关系数检验表”,我只在一些关于预测的书中看到过,比如《经济预测技术》(清华大学出版社1991,李一智主编),而统计书中却没见过.R的临界值是与自由度有关系的,它的值和F检验的临界值有某种函数
因为这个自变量贡献率小,通过T检验和F检验,只说明了这个变量对因变量有显著影响,但拟合优度低说明它不是最主要的影响因素,或者至少你在方程中忽略了一些其它有影响的因素.再问:我一般回归分析都说两者之间存
F测试只是说明回归方程式是有效的但是R平方显示模拟的效果并不好,拟合程度不高,应该换一种拟合方式.对回归模拟的综合判断是要把这两个方面结合起来看的.追问:那如果是这个结果这个实证研究还有意义吗对几个变
用相关指数R2的值判断模型的拟合效果,R2越大,说明残差平方和越小,模型的拟合效果越好,故①正确;在回归分析中,回归直线过样本点中心:(.x,.y)点,故②正确;带状区域的宽...
2、各个自变量之间存在共线性问题,冲销了对因变量的影响,建议看单个自变量的T值,把不显著的剔除.然后,逐步回归,看哪个自变量加入后使得整个模型的拟合优度降低.3、只看R²不行,还要看adjR
不能拒绝二次adm项系数为0的假设所以不显著你可以看看二次回归和一次回归R方的差异如果不大说明一次v即可.再问:但是R^2很大啊。。。再答:一次和二次的R方差异是多少?再问:相差不大。。。
是有这种可能性的只要你操作没错就要相信自己当然,你要考虑模型的选择我经常帮别人做这类的数据分析的再问:我的变量有10多个,可是任选其中一个变量做加权回归时也有0.9几,而且我的是截面数据,会有别的问题