图1是一个三角矩阵,从上向下数有无数多行

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:56:32
图1是一个三角矩阵,从上向下数有无数多行
试求酉矩阵U使得U'AU是上三角矩阵

把存在性的证明过程看懂就行了,证明是构造性的再问:这个矩阵是复数特征值,和实矩阵是不是还有所不同啊再答:说明你根本就没看懂,对特征值问题而言复的比实的容易多了

如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有3个…

1.等于100的平方,也就是100002.n的平方3.不能,因为若n的平方等于500那么n就为10*根号5就不是整数,所以不能再问:第一问应该是十吧再答:是是,没看清题目

线性代数问题 证明上三角矩阵的逆矩阵是上三角矩阵

设P为上三角矩阵,Q不是;且Q是P的逆矩阵.由Q不是上三角矩阵,存在i>j使得Q(ij)≠0.取Q的第j列中最下面一个非零元,假设在第l行(则l>=i>j),则Q(lj)≠0,且对任意k>l有Q(kj

定义一个N*N的矩阵,输出其对角线元素、上三角矩阵和下三角矩阵; 要考试 急

要用什么实现matlab有函数diagA=rand(3,3);B=diag(A);C=tril(A);D=triu(A)

请问n阶上三角矩阵的维数为什么是n*(n+1)/2呢?

第i列有i个自由度,所以维数就是1+2+...+n=n(n+1)/2正式一点讲,恰好有一个元素为1,其余元素为0的上三角矩阵构成空间的一组基,这样的矩阵有n(n+1)/2个

如图,在一个三角形点阵中,从上向下数有无数多行,其中各行点数依次是2,4,6,..那么哪一行的点数为100

图呢?lz,我没有看见啊,这样啊,你在上几年级?好简单的题啊.第一行两个,第二行四个,第三行六个,这不就是2N吗?所以,第五十行有100个再问:帮下忙啦~再答:我已经告诉你了,第五十行啊采纳我把再问:

线性代数 证明上三角矩阵的逆矩阵是上三角矩阵 请提供一个简单详细的方法

A的逆矩阵=A*/|A|A*是A的每个元素取其剩余行列式然后做转置由于A是上三角阵,其对角线右上的元素的剩余行列式均为零则A的逆为上三角阵

证明:上三角矩阵的和,差,数乘和乘积仍是三角矩阵

这个没什么特别的方法,很简单,只要设出两个上三角矩阵,根据运算,算出结果,判定仍是上三角矩阵即可.不难,自己动手写写吧

证明:数域F上的一个上三角矩阵必与一个下三角矩阵相似

取J为右上到左下对角线上元素为1其余为0的矩阵.可验证J^(-1)=J,J左乘矩阵A相当于将A按水平对称轴翻转,即对换第1行与第n行,第2行与第n-1行,...J右乘矩阵A相当于将A按竖直对称轴翻转,

matlab 中如何直接输入一个上三角矩阵,

就是简单的矩阵输入嘛A=[123;045;000]A=123045000或用m文件输入矩阵也可以用矩阵变换函数来做triu为上三角矩阵产生函数

任何n阶矩阵是一组三角矩阵(包括上三角矩阵和下三角矩阵)的乘积

前提是你得知道矩阵通过一系列(有限步)行初等变换可以转化到阶梯型,而对于方阵而言阶梯型一定是上三角阵,所以只要证明那一系列行变换都是三角矩阵就行了.第二类初等变换是对角阵,第三类初等变换是三角矩阵,唯

设A是一个n阶上三角矩阵,并且主对角线上的元素不为0,如何证明它的逆矩阵也是上三角形矩阵?

证:用伴随矩阵的方法由A可逆,A^-1=A*/|A|记A=(aij),A*=(Aij)^T其中Aij=(-1)^Mij是aij的代数余子式,Mij是aij是余子式.当ii.2.某行乘非零常数在这两类变

请问一下三角矩阵是上三角矩阵还是下三角矩阵?0 0 0 1 0 0 2 0 0 3 0 0 4 0 0 0

0001002003004000这是斜对角1001002003004000这是斜上三角.对应也有斜下三角这类方阵的行列式=斜对角线上元素的乘积再乘(-1)^(n(n-1)/2)

如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n,…,请你探究出前n行的点数和所满足

设前n行的点数和为s.则s=2+4+6+…+2n=(2n+2)n2=n(n+1).若s=930,则n(n+1)=930.∴(n+31)(n-30)=0.∴n=-31或30.故选B.

如何计算上三角矩阵

矩阵本身是一个数阵,而不是一种计算方式.上/下三角矩阵对应的行列式的值是其正/副对角线所有元素的乘积,正对角线取乘积的原值,副对角线取乘积的相反数.

上三角矩阵的特征值为什么是对角线元素?

设n阶上三角方阵A,其特征值为λ根据矩阵的特征值的计算公式有|A-λE|=0则有:|a11-λa12a13………………a1n||a22-λa23a24………a2n||a33-λ…………………a3n|=