圆o1与圆O2相交,过交点A及两圆心做等腰三角形,求阴影部分面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:34:10
1.因为AB垂直CD所以角ABC=角ABD=直角,直角所对弦为直径.2.连接CE与DF,角EBC与角DBF为对顶角所以相等,由同一圆弧所对圆周角相等可知,角EBC=角EAC,角FBD=角FAD所以角C
第1问:连接AB,则易知角ABC=90度,在三角形ABD中,角B=90度,在圆2中,则AD必过圆心O2,DO1垂直AC证明完毕!2211
因为AC为圆O2的切线,所以,∠CAB=∠AFB又因为∠BAC=∠CEB所以∠CEB=∠AFB所以CE∥AF再问:为什么∠CAB=∠AFB用做什么辅助线吗再答:弦切角等于所含弧上的圆周角
1,AC是圆O1的直径,所以∠ABC=90度,所以∠ABD=90度,即,AD是圆O2的直径2,AD是圆O2的直径,所以∠AO1D=90°,因为AO1=O1C,DO1⊥AC,所以DO1是AC的垂直平分线
证明:1、连接AB在圆O1中,AC是直径∴∠ABC=90°∴∠ABD=90°∴AD是圆O2的直径2、连接DO1(画图时忘记连了,自己连接)∵AD是圆O2的直径,O1在圆O2上∴∠AO1D=90°∴DO
根据C所外位置情况可分为两种情况,C在弧O₁A和 弧O₁B证明:(1)C在弧O₁A上时廷长O₁C交AD于F点;连接AO₁
证明:∵AB⊥CD∴AC和AD都是直径∵∠E=∠C,∠D=∠F∴△AEF∽△ACD∴AE/AF=AC/AD因为AC,AD为两个圆的直径,是定值∴AE/AF是一个常数
证明:(1)连接AC,AD∵B在⊙O1上且AB⊥BC∴∠ABC=90°∴AC是⊙O1的直径同理可得AD是⊙O2的直径(2)∠1=∠2∠1=∠3∠2=∠4∴∠3=∠4∴∠3+∠5=∠4+∠5∴∠CAD=
对这个问题,首先要说明弦AC,弦AD分别是两圆的直径(1)就是要证明AE:AF=AC:AD,方法证明三角形ACE和三角形ADF(2)要充分利用直觉,易发现三角形AEF面积最大时就是ACD说明方法:分别
不好意思,昨天我看错题目了,回答错了.但是,我现在又发现,题目还是有问题.因为我可以举出两个例子,分别说明AE既可以大于AB,也可以小于.大于的例子很好想,你自己也可以画的出来.小于的情况:如果圆2是
证明:(1)∵CD⊥AB∴∠ABC=90º∴AC是圆O1的直径【直径所对的圆周角为直角】(2)∵CD⊥AB∴∠ABD=90º∴AD为圆O2的直径∵AC=AD∴①O1C=O2B【=&
证明:(1)连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径.﹙2﹚∵AD是⊙O2的直径,∴∠AO1D=90°,∵AO1=
第一个问题:∵PA切⊙O1于A,∴∠BAC=∠ADE.∵A、B、C、E共圆,∴∠BAC=∠CED.由∠BAC=∠ADE、∠BAC=∠CED,得:∠ADE=∠CED,∴AD∥EC,∴PA/PC=PD/P
1、证明:连接AB、DB∵B是弧ABC的中点∴弧AB=弧BC∴∠BAC=∠BCA∵∠BAC是圆O1内接四边形ABED中∠BED的外角∴∠BAC=∠BED∴∠BED=∠BCA∴CD=DE∵∠BED、∠B
证明:(1)连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径.﹙2﹚∵AD是⊙O2的直径,∴∠AO1D=90°,∵AO1=
连接AB,根据圆的内接四边形的性质,易证得∠F+∠E=180°,因此CE∥DF,即四边形CDFE是平行四边形;由平行四边形的性质即可证得CE=DF.连接AB;∵∠CAB=∠F,CD∥EF;∴∠C+∠E
证明:△ACD为等腰三角形.(1)∵⊙O1,⊙O2为等圆,AB=AB,∴AmB=AnB∴∠C=∠D,∴AC=AD,∴△ACD是等腰三角形.(2)当⊙O1过O2点时(或⊙O2过O1点),△ACD为等边三
连两圆的公共弦AB角CEF=角CAB(同弧或等弧所对圆周角相等:弧BC)角CAB=角BFD(同弧或等弧所对圆周角相等:弧BD)所以角CEF=角BFD故:EC‖DF(内错角相等,二直线平行)
1)证明:连AB∵角O1AB=∠O1DB【同弧所对的圆周角】∠ACB=∠DCO1【同角】∴△ACB∽△DCO1∴∠DO1C=∠ABC∵AC是⊙O1的直径∴∠ABC=90°∴∠DO1C=90°∴DO1⊥
如图?你的图太坑人!大圆半径R是4,小圆半径r满足2r²=R²,r=2(根号2)阴影部分面积=小圆的一半减去(大圆的四分之一减去三角形ABO1)=(1/2)π[2(根号2)]