圆o1与圆o2相交于a b两点 r1=3 r2=4 弦AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:42:12
1.因为AB垂直CD所以角ABC=角ABD=直角,直角所对弦为直径.2.连接CE与DF,角EBC与角DBF为对顶角所以相等,由同一圆弧所对圆周角相等可知,角EBC=角EAC,角FBD=角FAD所以角C
不是“圆O1在圆O2上”,应该是“O1点在圆O2上”,改正后证明如下.连接AB,在⊙O2中,∵AC是直径,∴∠ABC=90°,∠ABE=90°,在⊙O1中,连接AE和ED,∵∠ABE=90°,∴AE是
证明:连接AB,连接AO1并延长AO1交圆O1于E,连接EB并延长EB交圆O2于F,连接AF∵AE是圆O1的直径∴∠ABE=90,AE=2R∴∠ABF=180-∠ABE=90∴AF是圆O2的直径∴AF
连接AB,在⊙O2中,∵AC是直径∴∠ABC=90°,∠ABE=90°在⊙O1中,连接AE和ED∵∠ABE=90°∴AE是直径,O1点在AE上,∠EDA=90°连接CO1,∵O1点在⊙O2上∴∠CO1
根据C所外位置情况可分为两种情况,C在弧O₁A和 弧O₁B证明:(1)C在弧O₁A上时廷长O₁C交AD于F点;连接AO₁
证明:∵AB⊥CD∴AC和AD都是直径∵∠E=∠C,∠D=∠F∴△AEF∽△ACD∴AE/AF=AC/AD因为AC,AD为两个圆的直径,是定值∴AE/AF是一个常数
证明:(1)连接AC,AD∵B在⊙O1上且AB⊥BC∴∠ABC=90°∴AC是⊙O1的直径同理可得AD是⊙O2的直径(2)∠1=∠2∠1=∠3∠2=∠4∴∠3=∠4∴∠3+∠5=∠4+∠5∴∠CAD=
证明:作两圆的公切线PM则∠MPE=∠PCE=∠A∵∠PEC=∠PDA∴△PAD∽△PCE∴PA/PC=PD/PE∴PA*PE=PC*PD再问:嗯,公切线?再答:两个圆的公共切线再问:切线画在哪里?再
连结AO1.∵BC切⊙O1于B,∴∠CBO1=90°.∵AO1BC是圆内接四边形,∴∠PAO1=∠CBO1=90°,∴AC是⊙O1的切线.
因为是等圆,所以他们的半径相等,链接AO1,BO1,AO2,BO2,可得AO1BO2为菱形,(因为四条边都是半径都相等),所以他的对角线互相垂直(菱形的性质),可知ABCD的对角线也垂直.所以也是菱形
连接O1M、O1B、O2N∴四边形AO1BO2是锐角为60°的菱形∴∠P=180°-(∠PMN+∠PNM)=180°-[(90°-∠O1MB)+(90°-∠O2NB)]=∠O1MB+∠O2NB=∠O1
见图. 另,似乎只要D不取B点,情况都成立
连接AB,根据圆的内接四边形的性质,易证得∠F+∠E=180°,因此CE∥DF,即四边形CDFE是平行四边形;由平行四边形的性质即可证得CE=DF.连接AB;∵∠CAB=∠F,CD∥EF;∴∠C+∠E
证明:(1)连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径.﹙2﹚∵AD是⊙O2的直径,∴∠AO1D=90°,∵AO1=
证明:(1)连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径.﹙2﹚∵AD是⊙O2的直径,∴∠AO1D=90°,∵AO1=
1.D在哪里2.E在哪里3.F在哪里2.应该为PT切圆O1于A,交圆O2于P吧
先画图,在⊙O2中画出正三角形,一边为AB以⊙O2的圆心分别连接OA,OB,又因为AB是内接正三角的边,所以对应圆心角为120度,AB又知道是4,就可以算出⊙O2圆心到AB的垂直距离,为(2根号3)/
如图?你的图太坑人!大圆半径R是4,小圆半径r满足2r²=R²,r=2(根号2)阴影部分面积=小圆的一半减去(大圆的四分之一减去三角形ABO1)=(1/2)π[2(根号2)]
(1)O2在⊙O1上,证明:∵⊙O2过点O1,∴O1O2=r,又∵⊙O1的半径也是r,∴点O2在⊙O1上;(2)△NAB是等边三角形,证明:∵MN⊥AB,∴∠NMB=∠NMA=90度,∴BN是⊙O2的