圆o中,ab 4,点e是oa上任意一点,过e作弦cd垂直于ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:12:24
圆o中,ab 4,点e是oa上任意一点,过e作弦cd垂直于ab
如图在矩形ABCD中,AC,BD相交于点O,E,F分别是OA,OD的中点

∵E、F分别是OA、OD中点∴EF是△AOD的中位线∴EF∥AD∵ABCD是矩形∴AD∥BC∴EF∥BC

在平行四边形ABCD中,对角线AC.BD相交于点O,BD=2ab,点e.f分别是OA.BC的中点.连接BE.EF 求证:

∵BD=2ABO是对角线的交点,∴⊿ABO是等腰三角形,∵BE是底边上的中线∴BE⊥AC∴EF是直角⊿BCE斜边BC上的中线∴EF=BF

在平行四边形abcd中,对角线ac、bd相交于点O,bd=2ab,点e、f分别是oa、bc的中点,连接be、ef,求证:

1、∵BD=2AD,OD=1/2BD∴OD=AD∵E是OA中点∴ED⊥CA2、证明:∵E,F分别是OC,OD的中点,∴EF是⊿OCD的中位线,∴EF=½CD连接BE,∵ABCD是平行四边形∴

已知,OA、OB是圆O的半径,且OA⊥OB,点P为OA上任一点,BP延长交圆O于点.

(1)连接OQ∵QE为圆O的切线∴∠OQE=∠OQB+∠BQA+∠AQE=90°∵OQ=OB∴∠OQB=∠OBP∠BQA=∠AOB/2=45°故∠OBP+∠AQE=45°(2)∠OBP+∠AQE=45

如图,在圆O中,直径AB=4,点E是OA中任一点,过E作弦CD垂直AB,点F是弧BC一点,链接AF交CE与点H,

(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC

OA OB 是圆O的半径 OA垂直于OB C为OB延长线上一点 CD切圆O于点D E为AD与OC

分析:根据切线的性质,以及直角三角形的性质,直角三角形的两锐角互余,即可证明∠ADC=∠AEO,从而得到∠DEC=∠ADC,根据三角形中,等角对等边即可证明△CDE是等腰三角形,即CD=CE.∵CD切

如图,在RT△ABC中,角ACB=90°,O是AB上一点,以OA为半径的圆O切BC于点D,交AC于点E,且AD=BD,连

你提的另一个问题:1、如图,在RT△ABC中,角C=90°,点D是AC上一点,过点A,D两点作圆O,使圆心O在AB上,圆O于AB相交于点E,若BD为圆O切线,tan角CBD=3/4,求tan角ABD的

已知,如图,在平行四边形abcd中,对角线ac与bd交于点o,点e,f分别是oa,oc的中点

O点是平行四边形的中点.以它和平行四边形的任意一个顶点的中点所造出来的图形,就是大图形的翻版再问:知道是知道啦,但不怎么会过程。再答:画出来就可以了

如图所示,已知:AB是圆O的直径,弦CD垂直AB于点E,点G是弧AC上任一点,AG,DC的延长线

连接GB,因为AB垂直于CD,CE=ED,所以BCD是等腰三角形=>BC=BD.所以,角CGB=角BGD.因为AB是直径,所以角AGB=角FGB=90.所以,角AGB-角BGD=角FGB-角CGB=》

如图,△ABO中AO=OB,以O为圆心的圆经过AB的中点C,且分别交OA BO 于点E F(1)求证AB是圆O的切线

C为AB中点,则OC垂直AB,由垂径定理容易得到(1);(2)作BG垂直AO,则BG为腰AO上的高,故有BG=AB/2=2根号3在RT△ABG中,由勾股定理知道AG=6,且角A=30度,所以角AOB=

如图,已知Rt△ABC中,∠B=90°,点E是BA延长线上的一点.以边AC上的点O为圆心、OA为半径的圆O与EC相切,D

第二题考虑一下圆,OD=OA,然后就行了,自己算吧,我也正在算第三题我不会写.~~~~(>_

已知平行四边形ABCD中,对角线AC,BD交于点O,点E、F、G、H分别是OB、OC、OD、OA的中点,

∵E、F是OB、OC中点∴EF是△OBC中位线∴EF=BC/2,EF∥BC同理GH=DA/2,GH∥DA又ABCD是平行四边形,AD∥BC,AD=BC∴EF=GH,EF∥GH∴四边形EFGH是平行四边

如图,OA是圆O的半径,以OA为直径的圆C与圆O的弦AB相交于点D,连OD并延长交圆O于点E,求证:弧BE=AE

角ADO是直径OA所对的圆周角,所以是90°,即直线OD垂直于AB;连接OB,OB=OA,等腰三角形ABO中,OD是底边垂线,根据三线合一,OD也是中线,AD=BD;因为AD=BD,OD=OD,角AD

如图,已知,在圆O中,直径AB=4,点E是OA上任意一点,过E作弦CD垂直AB

(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC

如图 oD是∠AOB的平分线,o是oc上任一点,OE垂直OA于E,OP垂直OB于F,求证DE=DF

抱歉!原题不完整(无图,且原题表述有误),无法直接解答.请审核原题,追问时补充完整,

如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O于点Q,过点Q的直线交OA延长线于点R

证明:(1)连接OQ;∵OB=OQ,∴∠B=∠BQO;∵PR=QR,∴∠RPQ=∠PQR∵∠B+∠BPO=90°,∠BPO=∠RPQ=∠PQR,∴∠BQO+∠PQR=90°,即OQ⊥QR,直线QR是⊙

OA,OB是圆O的俩条半径且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切圆O于点D,连AD交OC于点E求证:C

(1)如图(1),OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点E.求证:CD=CE;(2)若将图(2)中的半径OB所在直线向上平行

圆o中,E.F是弦CD上的点,并且CE=FD半径OA.OB分别经过E.F点求正OEF是等腰三角形 圆o

连接OC,OD.因为OC=OD,所以角OCE=角ODF.在三角形COE和三角形DOF中,OC=OD,角OCE=角ODF,CE=DF,所以三角形COE和三角形DOF全等,所以角OEC=角OFD.又角OE

如图在四边形ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,

(1)猜想:平行且相等∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵点E、点F分别是OA、OC的中点,∴OE=OF,∵在△DOF和△BOE中,DO=BO∠BOE=