圆o中弦AB的长是半径OA的根3倍,C为弧Ab的中点,aB,OC相交于点m
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:06:51
首先BC=4/3OB=OA=4利用BC与圆O相切,知道∠OBC=90°△OCB中利用勾股定理求得OC=4/3(根号10)下面说明CB=CD∠BCO=90°-∠BOC=∠AOB=180°-∠OAB-∠O
由AB,AC互相垂直知角BAC是直角 其所对的弦BC=2r 勾股定理得BC=2r=10 半径就是r
∵OA=OB∴∠OAB=∠OBA∵OC=BC∴∠COB=∠OBA=1/2=∠OCA∵OC⊥OA∴∠OAB=∠OBA=∠COB=30°∴OA=√3OC,AC=2OC∴OC=5/√3∴AB=3OC=5√3
前面的你都知道了对吧然后现在,OM=OA/2,然后AO=CO(都是半径),然后,OM=OC/2,所以M为CO中点,所以,CM=OM其余的答案上应该都有,楼主也能想出来对吧?
证明:∵C为AB的中点,OC为半径,∴PA=PB,AB⊥OC,∵AP=12AB=32AO,∴OP=AO2−AP2=AO2−34AO2=12OA=12OC,∴PC=12OC,即OP=PC,∴四边形OAC
应该是45°-35°=15°和45°+35°=75°两个答案.我是用的已下解法:
菱形因为c为弧ab的中点所以oc垂直于平分弦ab所以am等于2分之根号3倍oa且△oma为直角三角形所以∠oam为30°正弦定理得om等于2分之1oa所以mc等于2分之1oa勾股定理得ac等于oa同理
证明:连接OD∵OA是直径∴∠ADO=90°∴OD⊥AB∴AD=BD∴D是AB的中点
连接OB,知三角形OAB和CBO匀为等腰三角形.角BAO=ABO,ABO=COB.即:角BAO=ABO=COB在三角形OAB中:角OAB+ABO+BOC+90度=180度得:3*角OAB=90度故角O
应有两种情况1.当圆心在∠BAC内时①作OM⊥AC,则AM=(a/2)倍根号3∵OA=a利用勾股定理得OM=(1/2)a∴直角三角形中,∠OAC=30度②作ON⊥AB,则AN=(a/2)倍根号2∵OA
第一个问题:过C作CE∥AO交BO于E.∵CE∥AO、AC=BC,∴CE=AO/2=5/2、BE=EO=BO/2=5/2,∴DE=EO-DO=5/2-DO.∵CE∥OP,∴△CED∽△POD,∴CE/
根号3倍是什么意思?如果是根号OA的3倍,那就是菱形...连接OC,交AB于点D,OC垂直于AB,由勾股定理得出OC,AB垂直平分,固为菱形
就是个四边形,OA=OB,AC=BC,既不是平行四边形也不是矩形.证明:设OC与直线AB交与点E,则OE垂直于AE,且AE=BE=AB/2=2分之根号3倍OA.所以角AOE=30度,所以角AOB=2*
很高兴为您解答.可知:则AD=BD=(r根号3)/2直角三角形AOD中解得OD=r/2因此OD=DC=r/2所以四个直角三角形AOD,BOD,ADC,BDC全等所以四条边相等所以为菱形则面积=根三/2
连接OB∵OA⊥BC∴垂径定理:BD=CD=1/2BC∵OB=OA=AD+OD=1+4=5∴OB²=BD²+OD²5²=BD²+4²那么BD
(1)∵BC⊥OA,∴BE=CE,AB=AC,又∵∠ADB=30°,∴∠AOC=60°;(2)∵BC=6,∴CE=12BC=3,在Rt△OCE中,OC=CEsin60°=23,∴OE=OC2-CE2=
AC=6(延长AO交圆O为点D,AD为圆的直径,AD=10,AB=8,根据勾股定理,BD=6.因为BC平行于AO,还有圆的半径都是相等的,易得三角形AOC与三角形BOD全等,则AC=BD=6)
1、证明:因为AB=OB=OAAC=OA所以BA=1/2OC所以∠CBO=90°又因为OA=OB=AB所以三角形ABO是等边三角形所以∠ABO=60°所以∠CBA=90°-60°=30°=1/2∠BO
如图OA=OB=1 AB=√2 ∴∠BOA=90° ∴∠OAB=∠OBA=45° &nb
分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,根据垂径定理得AE=12AC=32,AD=12AB=22,∴sin∠AOE=AEAO=321=32,sin∠AOD=ADOA=