圆o为三角形abc的内切圆切点分布为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:06:18
半径为1其实不需要“三角形的面积为6”这个条件也可以解了.画一个三角形ABC,内切圆圆心为O,半径R=OD=OE=OF.因为OA=OA,OE=OD,∠AEO=∠ADO=90°,所以△OAE=△OAD,
设AE=X则AD=X,EB=12-X=BF,FC=DC=2+XAD又等于AC-DC=16-X则x=16-xx=8=AE则BF=4,CD=10
因为圆O是三角形ABC的内切圆,所以AD=AFBD=BECE=CF,因为AB=AD+DB=10BC=BE+EC=8AC=AF+CE=7,解方程组得;AD+BE+CE=AD+BC=25/2AD=(25/
题目错了吧,有个图吗?再问:图有了,题目没错~再答:那BC=12cm,BC=14cm是怎么回事再问:AB=12cm,BC=14cmBC=12cm是因为抄错了……再答:设BF为X∵圆O是三角形ABC的内
D=4设半径BE=BF=X(4+X)平方+(6+X)平方=10平方一个解是22X=2*2=4
锐角三角形∠DEF=90°-1/2∠A∠EDF=90°-1/2∠B∠EFD=90°-1/2∠C都是锐角,所以是锐角三角形
连接AD,勾股定理能算出来,BD=BE=5得出AE=8,设半径X,在直角三角形AOE中得出方程,解出半径再答:口算结果3分之10,方法就是这,结果没仔细算,你自己再好好算算再问:具体过程。。再答:AD
连接ODOEOBOFOCRT三角形ABC中,BD=BE,OE=CF=CE(因为OBOC都是角平分线,角平分线的一条性质决定了所分三角形全等,如OBD全等于OBE)设OB交DE于H可以证明BEH相似于O
因为圆O是三角形ABC的内切圆,切点是D,E,F所以AF=AE,BD=BF,CD=CE,所以2AE=AF+AE=(AB-BF)+(AC-CE)=AB+AC-(BF+CE)=(AB+AC)-(BD+CD
△DEF为一锐角三角形,且角D,E, F分别为角A,B,C三个角的两两半角和三个蓝色三角形的黑色边为半径,因此为三个等腰三角形角1,2,3分别和角A,B,C互补,因此蓝色等腰三角形的腰角刚好
连结OEOF已知△ABC的内切圆O,E为AC边上的切点,F为AB边上的切点,∴OE垂直ACOF垂直AB角AEO=∠AFO=90在四边形AFOE中四边形内角和=360所以∠FOE=130∠FDE=1/2
为锐角三角形,△DEF的三个内角∠AFD=∠DEF,∠BDE=∠DFE,∠CEF=∠EDF.(这是一个性质下面附图)而∠AFD,∠BDE,∠CEF分别是等腰△ADF,等腰△BDE,等腰△CEF的底角,
如图,D是斜边AB上的切点,连接OE和OF,不难证明OECF是正方形,依题意有AF=AD=4;BE=BD=6;CE=CF=r,据勾股定理得(4+r)²+(6+r)²=(4+6)
因为圆O是三角形ABC的内切圆所以AD=AF,BD=BE,CF=CE所以AB+AC-BC=AD+BD+AF+CE-(BE+CE)=AD+AF=2AF所以AF=(AB+AC-BC)/2=(b+c-a)/
以前做的一道题中的前面部分即是此题的解答,图中的字母I看成字母O即可:
证:连结BO,CO∵OD=OF=r,BD=BF∴BO垂直平分DF∴MF=1/2DF,∠1=90度∵FG垂直DE于G∴∠3=90度∴∠1=∠3=90度∵∠2=∠4∴△BMF∽△FGE∴BF/FE=MF/
=2,自己看书去,等腰三角形内切圆的圆点在于底边的垂线的1/3处