圆O内切三角形与D E F FG垂直DE于G 求证 DG:GE=BF:FC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:23:10
过O做OD垂直AC交AC于D角AOD=1/2角AOC=角ABH同理得角BOG=1/2角BOF=角BAH又角ABH+角BAH=90度所以角AOD+角BOG=90度角OBG+角BOG=90度所以角AOG=
证明:∵AE是⊙O的直径∴∠ABE=90°∴∠BAE+∠AEB=90°∵AF⊥BC∴∠ADC=90°∴∠CAF+∠ACB=90°∵∠AEB=∠ACB(同弧所对的圆周角相等)∴∠BAE=∠CAF∴BE=
相等证明:连接BE∵AE是直径∴∠ABE=90°∵AD⊥BC∴∠ADC=90°∴∠B+∠BAE=∠C+∠CAD∵∠E=∠C∴∠BAE=∠CAD
相等∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD
证明:连接DF,EF因为圆O内切于三角形ABC,切点分别为D、E、F所以根据弦切定理有:∠EDF=∠CFE,∠DEF=∠BFD,BF=BD,CF=CE因为FG垂直于DE于点G所以DG=DF*cos∠E
证明:连接BE因为AE是直径所以∠ABE=90°因为AD⊥BC所以∠ADC=90°因为∠BAE+∠E=90°,∠CAD+∠C=90°∠E=∠C(同弧所对的圆周角相等)所以∠BAE=∠CAD江苏吴云超祝
AD垂直BC交于点A?这句话改一改
易知R=4,r1=2令圆O2半径为r2连接OO2、O1O2过O2作O2D⊥OC,交OC于D依题并由勾股定理有:(r1+r2)^2-(r1-r2)^2=(R-r2)^2-r2^2解得r2=1
作圆的直径AE,连接EC则∠E=∠B,∠ACE=∠ADB=900所以△ACE~△ADB所以AE:AB =AC:AD所以2y:x=(12-x):3所以y=-1/6x^2+2x
角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8
(1)连接DC,过点D做AC的垂线交AC的延长线于F由于AD是角平分线,DE=DF此外角ABD=角DCF,角DEB=角DFA故而三角形BED全等于三角形CFDBE=CF,从而AC+BE=AC+CF=A
作OQ⊥AB,连DO并延长MC于P,连接OA则AQ=BQ=AB/2因为MC⊥AB,ND⊥AB所以MC//ND//OQ所以∠M=∠N又因为∠POM=∠DON,OM=ON所以△MOP≌△NOD所以MP=N
证明:(1)、连接OC∵CE是圆O切线∴OC⊥CE∵AE⊥CE∴OC‖AE∴∠OCA=∠EAC∵OA=OB∴∠OCA=∠OAC∴∠EAC=∠OAC即AC平分角BAE(2)、∵∠EAC=∠OAC∴弧CD
∠EDC=∠ABC(圆内接四边形外角等于内对角);∠DEC=∠ACB=90度所以△DEC∽△BCADE/EC=BC/CA=3/4
1.连接OB,OB=OA=OE=r三角形ABE为直角三角形角EAB+角E=90角E与角C对应同弧,角E=角C角EAB=90-角E=90-角C=角CAD2.三角形ABE相似与三角形ADCAD/AC=AB
菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行
菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行
证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B