圆O的半径为1,弦AB,弦AC,则∠BOC=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:17:17
圆O的半径为1,弦AB,弦AC,则∠BOC=
已知:⊙O半径OA=1,弦AB、AC长分别为2

如图,过点O作OE⊥AB,OF⊥AC,垂足分别为E,F,∵AB=2,AC=3,∴由垂径定理得,AE=22,AF=32,∵OA=1,∴由勾股定理得OE=22,OF=12,∴∠BAO=45°,∴OF=12

在半径为1的圆O中,弦AB,AC分别等于根号2,根号3,则角BAC的度数为多少?

设圆心为O,OE,OF分别垂直AB,AC在直角三角形AOF,AOE中有cos角OAF=(根号3/2)/1角OAF=30度cos角OAE=(根号2/2)/1角OAE=45度则角BAC=30度+45度=7

如图,AB为圆O直径,CD为弦且CD垂直AB,垂足为H,圆O的半径为1,CD=根号三,求点O到弦AC距离

连OC,因为CD⊥AB所以CH=CD/2=√3/2在直角三角形OCH中,由勾股定理,得,OH^2=OC^2-CH^2=1-3/4=1/4解得OH=1/2所以OH=CO/2所以∠COA=60°,因为OA

已知AB是圆O的直径,弧AC的度数为60°,如果圆O的半径为2cm,那么弦AC的长为?

OA=OC=半径,角AOC=60°三角形OAC就是等边三角形AC弦=2

在半径为1的圆O中弦AB.AC分别是根号3和根号2,则∠BAC的度数为

画出图来做辅助线过o点分别垂直AB,AC于E,D根据垂径定理CD=1/2AC,BE=1/2AB∵r=1∴角COD=45,角BOE=60再设角BAC为x则角BOC=2x,角DOE=180-X∴2X+(1

如图圆O的半径为1,弦AB=根号2,弦AC=根号3,求角BOC度数

连接ao,利用三角形余炫定理求aob和aoc再答:再求boc再问:具体过程可以给我吗抱歉我有点笨再问:我们没学那个定理。。再答:因为ao的平方加bo的平方等于ab的平方,所以角aob等于90度再答:过

1.已知AB为圆点0的直径,AC和AD为弦,AB=2,AC=根号2,AD=1,求∠CAD的度数2.已知圆点O的半径为2c

用cad解决,很快的,NO.1:做AB为直径的圆,然后以A点做AC,AD为半径的圆,连接两弦,角度尺寸标注.OKNO.2:做一条直线,以这条直线做圆周角为60度的弧,再以这条弧三点做个圆,然后用SC比

在半径为1的圆O中,弦AB、AC的长分别是根号2和根号3 ,则角BAC的度数为?

半径为1,说明弦AB对应的圆心角是直角,那么从A点出发的直径与AB的夹角就是45°;又因为AC的一半是二分之根号3,从圆心做AC的垂线与AC的交点也是AC的中点(这是圆的性质),所以角OAC的余弦的值

如图,ABC是圆O上三点,且角ACB=45度,圆O的半径长为1,求弦AC AB的

连结AO并延长与圆O相交于点D,连结BD,由圆的性质,AD为直径,AD=2,∠ABD=90º,又∠ADB与∠ACB同对着弦AB,∴∠ADB=∠ACB=45º,∴在直

在半径为1的圆O中,弦AB,AC的长分别为根号3和根号2,求角BAC的度数.

①两弦在圆心的两旁,利用垂径定理可知:AD=√3/2,AE=√2/2,根据直角三角形中三角函数的值可知:sin∠AOD=√3/2,∴∠AOD=60°,sin∠AOE=√2/2,∴∠AOE=45°,∴∠

在半径为1的圆O中,弦AB、AC分别是根号3、根号2,则∠BAC为多少度?

过A点,连圆心O做直径AD,连接,BD,CO在三角形OAC中,1^2+1^2=(根号2)^2.则三角形OAC为直角三角形,∠OAC=45度在三角形ABD中,AD为直径,则∠ABD为直角,Cos∠BAD

在半径为4CM 的圆O中,有一条弦AC与直径AB成60°的角,试求点O到弦AC的距离

作OD⊥AC,垂足为D,∵∠CAB=60°,点C在⊙O上.∴∠ACB=90°,∠B=30°∵AB=8,∠B=30°∴AC=4∵OD⊥AC,AC=4∴AD=2,OA=4在Rt⊿OAD中.OD=√(OA&

圆O半径为2,弦AB=根号3,弦AC=根号2,求角BAC的度数

请问有图吗再问:卷纸上没有再答:那就列方程

圆O的半径为5,弦AB长为8,弦BC平行于OA求AC长.

AC=6(延长AO交圆O为点D,AD为圆的直径,AD=10,AB=8,根据勾股定理,BD=6.因为BC平行于AO,还有圆的半径都是相等的,易得三角形AOC与三角形BOD全等,则AC=BD=6)

如图1,在圆O中,弦AB垂直AC,且AB=AC=10cm,OD垂直AB于D,OE垂直AC于E,则圆O的半径为多少cm?

因为AB、AC两弦垂直,且A在圆周上所以∠BAC=90,所以∠BAC对应的圆弧为180所以BC连线过原点,即为圆的直径所以r=d/2=(√(AB^2+AC^2))/2=(√(100+100))/2=(

已知圆O半径为1,弦AB、AC长为根号2,根号3,则角BAC的度数为?

连OA、OBOA=OB=1so,OA:OB:AB=1:1:根号2so,∠OAB=45°作OD⊥于ACso,AD=二分之根号3因为OA=1所以∠OAD等于30°so,∠CAB=45°+30°=75°

如图,AB为圆O的直径,CD为弦,且CD垂直AB,垂足为H,圆O的半径为1,CD=根号三,圆心到AC的距离

作OF⊥AC∵OA=OB=OC=1CD=根号3AB⊥CD∴CH=根号3/2∴OH=1/2∴BH=1/2∴BC=1∴△OBC为正△∴∠B=60°∵AB为直径∴∠ACB=90°∴∠A=30°∴OF=1/2

如图,圆O的半径为R,弦AB=a,弦BC平行OA,求AC

延长AO交圆O于D,连接CD则AD为圆O的直径∴∠ACD=90∵BC//OA,即BC//AD∴弧AB=弧CD【平行两弦所夹的弧相等】∴AB=CD【等弧对等弦】根据勾股定理AC=√(AD²-C