圆O的半径为3,一条弦AB=4,P为圆O上任意一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:45:32
oc=4,ch=2根号3,所以oh=2,ah=6,ac=4根号3,如果连接ad的话,则三角形acd为等边三角形,圆周上到直线AC的距离相当于圆周上到直线DC的距离,因为oh=2,所以bh=2,ah=6
连接OC,交AB于D,连接OB∵C是弧AB的中点∴OC⊥AB(平分弧对直径垂直于弧所对的弦)则OD=1,设OB=OC=r,CD=r-1DB²=OB²-OD²DB²
1、过O做垂直于弦AB的垂线,交AB与E,形成直角三角形OAE,可知OE=根号5,说明OE就是OM,说明CD为直径,四边形ABCD面积等于三角形ACD和三角形CBD之和,等于AB与CD乘积的一半,即0
如图,AB弧为圆周1/3,则AB对应圆心角 ∠AOB=360/3=120度.图中半径、垂径、弦的一半组成的△AOC为一个含有60度的RT△,所以,弦的一半AC=半径AO*√3/2=2√3故,
因为OC=OE,所以∠OCE=∠OEC,又因为E是弧ADB的中点,且AB是直径,所以∠AOE=∠BOE=90°因为CD⊥AB所以∠BHD=∠BOD=90°所以OE//CD所以∠OEC=∠ECD所以∠E
∵∠COD=120°CO=DO∴∠COE=∠DOE=60°又∵AB⊥CD∴∠C=∠D=30°又∵OD=8cm∴OE=4cm∴在RT△OED中ED=根号下OD²+OE²=根号下8
因为AB是圆O的直径,点D在圆上所以∠ADB=90°又OC⊥AB所以∠EOB=∠ACB=90°又∠ABD=∠EBO所以Rt△EBO∽Rt△ABD则BO:BD=EB:AB(1)在Rt△EBO中,OB=O
你打错了,后半句应该是“求弦AB及圆O的一条弧所组成的弓形的面积”!
①若C在OA上②若C在OB上设CO为X,则AC为6-x同理:CO=X=3在Rt△DCO中∵AO=r=6∴AC=AO+OC∴AC=A0+OC=3+6(3√3)²+x²=36=927+
3做O到AB的垂线OC,OA=5,AC=4,则OC=3,勾股定理.PC=BC-PB=1
作OD⊥AC,垂足为D,∵∠CAB=60°,点C在⊙O上.∴∠ACB=90°,∠B=30°∵AB=8,∠B=30°∴AC=4∵OD⊥AC,AC=4∴AD=2,OA=4在Rt⊿OAD中.OD=√(OA&
OC=√4^2-2^2=2√3
设OC交AB于D∵C为弧AB的中点∴OD⊥ABOD=1设半径OB=OC=x则在Rt△BOD与Rt△CDB中BD²=BC²-CD²BD²=BO²-OD&
答;由题意可知.A.C.D三点在以B为圆心,a为半径的圆上.圆弧AC所对的圆心角是角ABC=60°.所对圆弧角是角ADC,则等于30°有因为角ADC等同于角ADE是以O为圆心的圆弧角,则圆弧AE对应的
运用弦于圆心的关系,过圆心做弦的垂线,求的O到AB的距离为2倍的根号3
连结OA和OB,则OA和OB就是圆的半径,都等于1再经过点O做出AB的垂线,交AB于点C,那么OC就平分弦AB了,即AC=√3/2,同时OC也平分角AOB(这好像是叫弦切定理吧,有点儿忘了,吼吼)那么
第一题是(1)..第二题是(4)..第三题是(1)..第四题是(相等)..
应该是16,特殊情况是点p正好平分弦AB,使OP垂直AB,跟据直角三角行定理,所以AP=BP=4,4*4=16,希望采纳麻烦采纳,谢谢!