圆心o是三角形abc的外接圆,ab为直径Ca=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:03:20
因为3OA+4OB+5OC=0所以5OC=-3OA-4OB因此(5OC)^2=(-3OA-4OB)^2即25=9+24OA*OB+16所以OA*OB=0又向量AB=OB-OA所以OC与AB的数量积=O
一、外心.三角形外接圆的圆心二、重心三角形三条中线的交点三、垂心三角形三条高的交线四、内心三角形内切圆的圆心,
AD=4AB=4又根号2则BD=4∠ABC=45度以AC为炫的圆心角为90度AC为斜边,半径即是直角边为(5√2)/2直径就是5√2
连接BI∵I是△ABC的内心∴∠BAI=∠CAI,∠ABI=∠CBI.弧BE=弧CE∴∠BAE=∠EBC∵∠BIE=∠BAI+∠ABI∠IBE=∠IBC+∠EBC∴∠EBI=∠EIB∴EB=EI
连接dc因为ad为直径所以角acd为直角角abc等于角cad又因为角abc和角adc弧ac所对应的圆周角所以两角相等即三角形cad为等腰直角三角形因为oa为5所以ad为10所以ac等于cd等于五倍的根
角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)
证明:∵AB为弦,CD为直径所在的直线且AB⊥CD,∴AD=BD,又∵CD=CD,∴△CAD≌△CBD,∴AC=BC;又∵E,F分别为AC,BC的中点,D为AB中点,∴DF=CE=12AC,DE=CF
因为OA=AB,所以OAB构成等边三角形,AB=OA=OB=2;因向量OA+AB+AC=向量OB+AC=0,故知AC与OB平行且大小相等,即AC=OB=2;OAC也构成等边三角形,ABOC形成一个锐角
证明:连接ODP为三角形ABC内切圆心,所以∠BAD=∠CAD弧BD=弧CD所以OD⊥BC在△ABD和△ADE中∠BAD=∠DAEAD²=AB×AE,即AB/AD=AD/AE所以△ABD∽△
储备知识:1)余弦定理:三角形ABC中,a,b,c分别是角A,B,C的对边则cosA=(b²+c²-a²)/2bc或cosB=(a²+c²-b
用两边中垂线的交点求AB的中垂线为y=3BC中点为(4.5,1.5),BC斜率-1/9,其中垂线斜率9,点斜式y-1.5=9(x-4.5)交点为(14/3,3),即为圆心坐标
∵AB=AD+BD=11,∴本题中AB不是直径,如果是直径,直径可求.∴不是用射影定理,本题用相似三角形.根据勾股定理:AC=√(CD^2+AD^2)=3√5,BC=√(CD^2+BD^2)=10,过
m=1作直径BD,连接DA、DC,于是有向量OB=-向量OD易知,H为△ABC的垂心∴CH⊥AB,AH⊥BC∵BD为直径∴DA⊥AB,DC⊥BC∴CH//AD,AH//CD故四边形AHCD是平行四边形
向量BC=向量AC-向量AB向量AO*AB=1/2AB*AB同理AC所以向量AO*向量BC=1/2(AC2-AB2)=5/2
设AC的中点为E,AB的中点为 F,∵△ABC的外接圆圆心为O,AB=2,AC=3~
2.5啊联系外心的几何意义把向量BC分解成向量BA+向量AC再用分配率向量AO×向量BA=向量BA的模×1/2向量BA的模同理向量AO×向量AC=向量AC的模×1/2向量AC的模.
O是外心,则|OA|=|OB|=|OC|=R,若OA+OB+OC=0,则-OA=OB+OC平方,得 OA²=(OB+OC)²即OA²=OB²+OC²+
延长AO交外接圆于D.cosDAC=AC/AD,cosDAB=AB/AD,AO*BC=1/2AD*(AC-AB)=1/2(AD*AC-AD*AB)=1/2(|AD||AC|cosDAC-|AD||AB
(1)证明:连接CE因为CD=CE=CB所以角CDE=角CED角CEB=角CBE因为角ACB=90度角ACB+角CDE+角CED+角CEB+角CBE=360度所以角CDE+角CBE=135度角CED+