圆心O的直径为10cm AB,CD是圆心O的两条互相平分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:32:15
/>∵AB为⊙O的直径,C为弧AD的中点,∴OC⊥AD(垂径定理的推论),∵∠BAD=20°,∴∠AOC=90°-∠BAD=70°,∵OA=OC,∴∠ACO=∠CAO=(180°−∠AOC
因为,DC切圆心O于点C,所以OC垂直DC,又AD垂直DC.所以OC平行于AD.根据平行线的性质,所以∠BAD=∠BOC.又根据圆周角定理:同弧所对圆周角是圆心角的一半.所以2∠CAB=∠BOC=∠B
1、证明:连接OC因为CD=BC,AO=BO所以OC是△BAD的中位线所以OC//AD,因为CE⊥AD所以CE⊥OC所以CE为圆心O的切线2、证明连接AC因为AB是直径,所以∠ACB=∠ACD=90°
连OC,因CD切圆O于C,故OC⊥CD,又AD⊥CD,∴AD‖OC,∴∠DAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO=∠DAC,即AC平分∠DAB.
(1)证明:连接OT.∵OT=OA∴∠OTA=∠OAT∵PQ切圆O于T∴∠OTC=90°∵∠ACT=90°∴∠OTC+∠ACT=180°∴OT平行于AC,∠OTA=∠TAC∴∠TAC=∠OAT∴AT平
答案CA应为延长线段AB至C,使BC=AB=aB没说弧半径
连接OC..∵点C在⊙O上,OA=OC,.∴∠OCA=∠OAC..∵CD⊥PA,.∴∠CDA=90°,则∠CAD+∠DCA=90°..∵AC平分∠PAE,.∴∠DAC=∠CAO..∴∠DCO=∠DCA
连DO∴∠DOC=∠ADO=∠DAO=∠COB又∵DO=BO,OC=OC∴△DOC≌△BOC∴∠ODC=∠OBC=90°∴DC是切线证毕
观察图形,发现:阴影部分的面积是两半圆面积差的一半,即S阴影=12(S大圆-S小圆)=12(π×32-π×12)=4π.
证明:连接AC,BC∵CD⊥AB,【垂直弦的直径平分弦,并平分该弦所对的两条弧】∴弧AC=弧AD∴∠ACD=∠ABC【同圆内,等弧所对的圆周角相等】∵OC=OB∴∠OCB=∠OBC=∠ACD∵∠DCP
∵PB是圆O切线,∴∠PBO=90°∵AD∥PO,∴∠ADO=∠DOP,∵OA=OD,∴∠A=∠ADO,∴∠A=∠DOP∵∠A=1/2弧BD,∠BOD=弧BD,∴∠A=1/2∠BOD,∴∠POD=1/
∠ACD=120°∠OCD=90°△ABC为直角三角形AB为直径∠ACB=90°∠ACO=∠ACD-∠ACB=30°∠BCD=30°∠CAB=∠ACO=30°∠D=180°-∠CAD-∠DCA=180
证明:连接AC,AB,BC,BD,过C,D作CQ,DN垂直AB于点Q,N.则PA^2=AQ*AB,PB^2=BN^AB,PA^2-PB^2=(PA+PB)(PA-PB)=(AQ-BN)AB,即:PA-
作OE⊥AB于点E则OE=10,OA=12.5根据勾股定理可得AE=7.5∴AB=2AE=15cm
过圆心O作弦AB的中垂线交AB于C,交圆周于D. 则OA=OB=5,BC=AB/2=2.5 &n
(1)略(2)BE=BG+EG=BD+EF,理由是:设FD与AE交于点O,过O做OG⊥DE,∵∠AED=∠ADF,且∠ADF=∠AED∴∠AED=∠AED∴FE=EG又∵弧AB=弧CD∴∠DAB=∠A
(1)连接AC因弧AB=弧CD,则AB=CD,则∠ADB=∠DAC(相等弦对应圆心角相等)因∠ADB=∠DAC,∠DBA=∠ACD=90度(直径所对角为90度),AD=AD,则三角形DBA全等三角形A
半圆所以为直角三角形设AB即直径doc为中线0c=1/2*dAC*BC=1/4*d^2直角三角形中AC^1+BC^2=AB^2=d^2所以AC=1/2*[(根号3/2)*d+(根号1/2)*d]BC=
思路:欲证DE为切线,只需证明圆O的半径OD垂直DE即可.连接OD,AD,因为O为圆心,所以AO=BO,即AB=2BO.又因为DC=BD,所以BC=2BD.容易得出,△BOD~△BAC,从而OD//A
∵AB是直径∴AD⊥BD又DC=BD∴△ABC等腰(等腰三角形底边的中线与高重合)∴AB=AC再问:AB是圆心O的直径BD是圆心O的弦延长BD到C使DC=BD连结AC过点D作DE垂直AC垂足为E求证D