圆柱轴截面面积为4,则圆柱侧面积为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:19:20
已知圆柱的底面半径为2,高为4,经过圆柱两条母线的截面与圆柱的轴之间的距离为根号3,求该截面的面积.如图OC=√3, AO=2, ∴AC=1, &
圆柱的表面积=侧面积+上下两个圆面的面积(侧面积=圆的周长乘以圆柱的高,其实展开是一个矩形)圆柱的侧面积=圆的周长乘以圆柱的高(展开后长方形的长就是圆的周长,宽就是圆柱的高)圆锥的侧面积其实展开是一个
8派再答:2派X2X2
体积为:π×22×4=16π(立方单位);表面积为:2×π×22+4π×4=24π(平方单位).
设圆柱底面半径是r,球半径是R,因为轴截面正方形,那么圆柱高是2r则圆柱侧面积=2πr•2r=4πr2,球的表面积=4πR2,因为4πr2=4πR2,所以r=R那么圆柱的体积V1=πr2•2r=2πr
球的体积V球=4*π*R³圆柱体积V柱=π*r²*2*r=2*π*r³V球=V柱==>>4*π*R³=2*π*r³r=R*2开三次方s球=4πR
“yoyoko2210yuan”:设AB为圆柱的半径=5厘米,CD为圆柱的高=5厘米AB的弧长为5厘米×3.14÷2=7.85厘米把半个圆柱侧面摊平是一个长方形abcd,ab=7.85厘米,ab=5厘
∵圆柱的轴截面是正方形,∴可设圆柱的底面半径为R,则圆柱的高为2R则V圆柱=2R•πR2=2πR3双由圆柱体积与一个球的体积之比为3:2则V球=43πR3,则球的半径也为R则圆柱的侧面积S1=2R•2
圆柱的轴截面是边长为4的正方形,则圆柱的底面直径和高都是4圆柱的底面半径=4÷2=2圆柱的体积=3.14×2×2×4=50.24
由题意,从E点沿圆柱的侧面到相对顶点G的最短距离即为圆柱侧面展开图一个顶点到对边中点的距离,如图∵圆柱的轴截面是边长为5cm的正方形,∴EF=5π2cm,EG=52+(5π2)2=524+π2(cm)
(1)0?(2)截面为矩形,设底面其半径为r,高为hS=2hr侧面积s=2pai*r*h[底面周长*高】s=paiS(3)BC'//AD'AB'=AD'=B'D'所以为60°..
分两种情况:,根据周长公式L=2πR可知,围成的圆柱体周长即为所给矩形硬纸的边长,一共两种边长,分别计算即可得出R值.即L=2πR=4或者L=2πR=8然后根据半径算出截面积S=πR^2这里我就不细算
s=2*2π*4=16π还剩下15条棱,10个顶点,7个面
高h=s/c,底半径r=c/2π,体积V=πr2*h=(sc)/(4π)
由题意知道,圆柱体积V=πr^2h,而轴截面周长为4,即h=2-2r(0
圆柱的轴截面是以底面圆直径为长,母线长为宽的长方形,所以S=2*2*5=20
1、圆柱那题圆柱底面周长=S/10=2πRS=20πR2、线段那题Y=X/2MC=AC/2NC=BC/2两式相加得MN=AB/2即Y=X/2
用长为4宽为2的矩形做侧面围成一个圆柱分两种情况1、圆柱高为2,底面周长为4,则底面直径为4/π,圆柱的轴截面积=底面直径*高=4/π*2=8/π2、圆柱高为4,底面周长为2,则底面直径为2/π,圆柱
1、以4为底面周长,2为高直径*3.14=4直径=4/3.14轴截面积=直径*高=4/3,14*2=8/3.142、以2为底面周长,4为高直径*3.14=2直径=2/3.14轴截面积=直径*高=2/3
设圆柱的高为:2,由题意圆柱的侧面积为:2×2π=4π圆柱的体积为:2π×12=2π球的表面积为4π,球的半径为1;球的体积为4π3,所以这个圆柱的体积与这个球的体积之比为2π4π3=32.故答案为: