圆的内接四边形abcd的四条边长顺次为ab=2bc=7

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:59:35
圆的内接四边形abcd的四条边长顺次为ab=2bc=7
已知圆的内接四边形ABCD的边长AB=AD=4,BC=6,CD=2,求圆的半径及四边形ABCD的面积.

连接BD设∠DAB=α∠DCB=β设BD=x用余弦定理求出cosα和cosβ的值又cosα=-cosβ解得x=16√7/7S=8sinα+6sinβ剩下略

已知圆的内接四边形ABCD的边长AB等于2,BC等于6,CD等于DA等于4,求圆的半径及四边形ABCD的面积.最好附加过

由圆内接四边形面积公式:(中学数学手册上都有,)S=√(p-a)(p-b)(p-c)(p-d)其中:P=(a+b+c+d)/2(a,b,c,d为四边之长)=(2+6+4+4)/2=8S=√6×2×4×

四边形ABCD内有一点O,O点到四边形的垂线都是4厘米,四边形的周长是36厘米,则四边形ABCD的面积是多少?

36÷4=9(厘米)9²=81(平方厘米)答:四边形ABCD的面积是81平方厘米.

如下图,已知四边形ABCD在平面α内的射影是一个平行四边形A1B1C1D1,求证:四边形ABCD是平行四边形

首先要限定四边形ABCD在同一个平面上,不是空间四边形.这题可以用反证法证明.投影的基本属性是:1)原来平行的直线的投影依旧是平行的.2)平面上两条不同的直线,投影也是不同的.从题目可知A1B1//C

如图,在圆O的内接四边形ABCD中.AB=1,BC=2,CD=3,DA=4.求:(1)AC的长.(2)四边形ABCD的面

四点共圆,所以∠B+∠D=180°,即∠D=180°-∠B由余弦定理:△ABC中,AC²=AB²+BC²-2×AB×BC×cosB△BCD中,AC²=AD

已知四边形ABCD内接于圆0,且AD∥BC,试判定四边形ABCD的形状,并说明理由.

(1)若AB∥CD,则ABCD为矩形.如图:∵AD∥BC,AB∥CD,∴四边形ABCD为平行四边形,∴∠B=∠D,∵圆内接四边形对角互补,∴∠B+∠D=180°,∴∠B=∠D=90°,∴▱ABCD为矩

已知四边形ABCD内接于圆O

对于正方形“内接于”圆,说明是在圆的内部,“外切于”圆,说明是在圆的外部;对于圆“内切于”正方形,说明在正方形内部;“外接于”正方形,说明在正方形外部.四边形内接于圆,等同于,圆外接于四边形,圆内切于

四边形ABCD内有一点O,O点到四条边的垂线长都是4厘米,已知四边形周长是36厘米,四边形ABCD的面积是多少

连OA、OB、OC、OD,将四边形ABCD分成四个小三角形,则四边形的面积等于这四个三角形的面积之和.S=(1/2)×4×(AB+BC+CD+DA)=72(cm²)

四边形EFGH是正方形ABCD的内接四边形,已知EG=3,FH=4,四边形EFGH的面积为5,求正方形ABCD的面积.

在正方形ABCD中,过E、F、G、H分别作对边的垂线,得矩形PQRT.设ABCD的边长为a,PQ=b,QR=C,由勾股定理得b=√(3²-a²),c=√(4²-a&sup

已知,如图所示,四边形ABCD是圆O的内接四边形,AD平分△ABC的外角∠EAC,求证DB=DC

证明:在BA的延长线上取一点E,则AD平分∠EAC,∠EAD=∠CAD∵四边形ABCD是圆O的内接四边形∴∠EAD=∠DCB【圆外接四边形外角等于内对角】∠DAC=∠DBC【同弧所对的圆周角相等】∴∠

圆的内接四边形的性质

角ABC=角ADC(同弧所对的圆周角相等).角CBE=角D(外角等于内对角)△ABP∽△DCP(三个内角对应相等)AP*CP=BP*DP(相交弦定理)AB*CD+AD*CB=AC*BD(托勒密定理)

已知四边形ABCD是圆x²+y²=9的一个内接矩形,求矩形ABCD的周长的最大值?用均值定理做!

要求还挺高.设A在第一象限,A(x,y)(x>0,y>0)矩形的四条边与对称轴平行.则周长是4x+4y利用均值不等式x²+y²≥2xy∴2(x²+y²)≥(x+

四边形EFGH是正方形ABCD的内接四边形,已知EG=3,FH=4,四边形EFGH的面积为5,求正方形ABCD的面积.具

在正方形ABCD中,过E、F、G、H分别作对边的垂线,得矩形PQRT.设ABCD的边长为a,PQ=b,QR=C,由勾股定理得b=√(3²-a²),c=√(4²-a&sup

关于圆的内接四边形的性质的问题

如四边形ABCD内接于圆O,延长AB至E,AC、BD交于P,则A+C=180度,B+D=180度,角ABC=角ADC(同弧所对的圆周角相等).角CBE=角D(外角等于内对角)△ABP∽△DCP(三个内

四边形ABCD内接于圆O,对角线AC,BD相交于E,AE=CE,AB=√2AE,BD=2倍根号3,求四边形ABCD的面积

设AE=x,则CE=x,AB=√2x,AC=2x因为BD=2√3,BF=4,所以∠F=60°,则∠BCD=60°因为AB:AE=√2,AC:AB=√2,所以AB:AE=AC:AB所以△ABE∽△ACB

如图,四边形ABCD是圆O的内接四边形,AB=AD,∠BCD=120°.求证AC=BC+CD

,△ABD为等边三角形所以,∠BCA=∠BDA=60°在AC上截取一段CE=BC那么,△BCE也是等边三角形则,∠CBE=60°而,∠ABD=60°所以,∠CBE-∠DBE=∠ABD-∠DBE即,∠C

已知圆O中的内接四边形ABCD中,AB//BC,AD=BC.是判断四边形ABCD的形状,并加以证明

如AB平行CD,就是一矩形如AB不平行CD,就是一等腰梯形连接AC,因AD平行BC,则角DAC=角ACB则AB=CD(1)如AB不平行CD,则四边形ABCD为等腰梯形(2

如图,已知四边形ABCD内接于直径为3的圆O

AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/

已知四边形ABCD内接于直径为3的圆O,

如图,连结BO,并延长交AD于Q,连OD,则BQ为AD垂直平分线,且△OAB≌ △ODB(三边相等),  ∴∠ODP=∠OAB=∠CDP∴ 在△CDO中&nbs

圆的内接四边形性质

教材上有两条1.圆内接四边形的对角互补2.圆内接四边形的外角等于它的内对角还有托勒密定理:圆内接四边形对边乘积的和,等于对角线的乘积对角