在(1 x-x^2)^6 的展开式中x^5 的系数为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:24:40
30C(2,5)x³2²x1+C(1,5)x的4次方x2x(-1/x)=40-10=30若已解惑,请点右上角的再问:有过程吗?谢谢再答:C(2,5)x³2²x1
(1+x)^6中x^3次项(包括x^3次项)以下的项有1,6x,15x^2,20x^3(1-x)^4中x^3次项(包括x^3次项)以下的项有1,-4x,6x^2,-4x^3那么x^3系数为20-4-6
解题思路:赋值法求二项式展开,系数之和。...................................................解题过程:
要出现x,则要求(x-2)^6中出现,x或常数,常数与后后边的X相乘得到x,x与后边的常数相乘得到x,这样整体才会出现x.所以应该是(-2)^6+6*(-2)^5=-128(负的)
(1+x³)(x+1/x²)^6=(x+1/x²)^6+x³(x+1/x²)^6先分析(x+1/x²)^6设第n+1项(n=0,1,2...
排列组合么一个x两个-x2三个x一个-x2五个x一共=(6*10)+(-6*20)+(6)=-54
x^2的系数是0 该式子中不可能出现x^2求采纳
展开式前三项系数分别为:Cn0,Cn1*(-1/2),Cn2*1/4化简:1,-n/2,n(n-1)/8绝对值成等差数列,即:1+n(n-1)/8=-n解得n=1(舍去)或8第四项为Cn3(x)^(5
用组合来求.得-55再问:那怎么求谢啦再答:就是把式子看成在7个括号内取数,每个括号取1个数,取出3个-x的有多少种情况。因为有一个括号不和其他6个不同,所以分2种情况:1。在最后一个括号内取2,则在
∵(x^2-1/x)^5=1/x^5(x^3-1)^5∴含x^7的项:1/x^5×C5(4)(x^3)^4×(-1)=-5x^7∴x^7的项的系数是-5
480700设:S=(1+x)^3+(1+x)^4+.+(1+x)^24则:(1+x)S=(1+x)^4+.+(1+x)^24+(1+x)^25两式相减:xS=(1+x)^25-(1+x)^3所以有:
(x-1/x)2n展开式的第r+1项是C2n(r)*x^(2n-r)*(-1/x)^r=C2n(r)*x^(2n-r-r)*(-1)^r令2n-r-r=0,得r=n所以,常数项是C2n(n)*(-1)
可用二项式定理来求,把其中两项看成一项去求.也可用排列组合思想求解.展开式中x^5项可以这样产生:两个x²项和一个x相乘;或一个x²和三个x相乘;或五个x相乘.由两个x²
C(3,6)=20
先用二项式定理(见高中二年级数学课本)求其通项公式,然后
根据多项展开式的公式得该多项式的第n项为C(6,n)*(1/x)^n*(x²)^(6-n)=C(6,n)*x^(12-2n-n)=C(6,n)*x^(12-3n)令12-3n=3解得n=3则
(1-a/x^3)(2x-1/√x)^6=(2x-1/√x)^6-a/x^3(2x-1/√x)^6设(2x-1/√x)^6各项系数之和为A,则a/x^3(2x-1/√x)^6各项系数之和为aA所以A-
因为1/(1+x)=1-x+x^2-x^3+...+(-1)^(n-1)x^n+...所以1/(1+2x)=1-(2x)+(2x)^2-(2x)^3+...+(-1)^(n-1)(2x)^n+...=