在5阶行列式的展开式中,项a52.a2.a441
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:12:04
对于Tr+1=Cr5(x2)5−r(−1x)r=(−1)rCr5x10−3r,对于10-3r=4,∴r=2,则x4的项的系数是C52(-1)2=10故选项为B
1、举例来说:将行列式第一行的元素与第二行元素的代数余子式相乘后求和,相当于计算一个第一行与第二行元素相同的行列式的值,当然等于零.2、你问的问题有些奇怪,“注意什么”不知何意?如果你的意思是n阶行列
先调整一下顺序,a12,a24,a35,a41,a53,此时列标排列为24513,逆序数为5,从而符号为负号;或者不调整顺序,行标排列逆序数t(15423)=5,列标排列逆序数t(23145)=2,总
题目有歧义,能再加几个括号不再问:哪有歧义???再答:1/2x^2的^2在哪谁上?再问:1/2和x是可开的,在x上
行列式按定义展开中,含a13的一般项为(-1)^t(3j1j2j3...jn)a13a2j2a3j3...anjnj2j3...jn为1,2,4,...,n的全排列所以共有(n-1)!项
设求的项为Tr+1=C5r(2x)r=C5r2rxr今r=3,∴T4=C5323x3=80x3.故答案为:80
解答在图片上
∵(x^2-1/x)^5=1/x^5(x^3-1)^5∴含x^7的项:1/x^5×C5(4)(x^3)^4×(-1)=-5x^7∴x^7的项的系数是-5
答:我们把它按列数重排一下得:-a51a32a43a14a25a66列数下标为123456,而行数下标为534126,求逆序数这个你会了吧?求到是8.所以这项是正的,所以负的这个不是行列式的项.怎么判
a21a53a16a42a65a34=a16a21a34a42a53a65t(614235)=5+0+2+0+0+0=7应该带负号,答案有误,正常.
行列式定义展开式中,正负项的个数各半所以5阶行列式中,符号为正的项有5!/2=60
设等差数列{an}的公差为d,∵a9>a5,∴4d>0即d>0∵7a5+5a9=0,∴7(a1+4d)+5(a1+8d)=0∴3a1+17d=0∴a1<0∵an=a1+(n-1)d−17d3+(n−1
y的系数为A23=(-1)^(2+3)*1-111=-(1+1)=-2
是的完全正确!
根据那个杨辉三角,可知第n行最大的二项式系数为第n/2+1个,由此可得n=8.展开式中的常数项就好做了,(x/2)^2的那项,就是c28/(2^2),第三项为展开式中的常数项.
n阶行列式的展开式中每项是元素的乘积:由不同行不同列的元素相乘,且各行各列都有一个元素取这些元素时可以固定从第一行开始取,则列下标就是1~n的任意一种排列,共有n!种故n阶行列式的展开式共n!项
可用两种方法说明构造元素都是1的行列式这个行列式显然等于0(至少2阶)由行列式的定义,其每个展开项都是1或-1故正负项各占一半(正负抵消为0) 2.有个结论:交换一排列中的两个元素的位置,则
先写出展开式T(r+1)=C5r(x^2)5-rC5r(x^-1)r因此可得C52(X^2)3(-1/X)^2所以系数为(5*4)/2=10
x2+x+1)(x-1)5的展开式中,含x4项的系数是由(x-1)5的含x2项的系数加上含x3项的系数加上含x4项的系数∵(x-1)5展开式的通项Tr+1=(-1)5-rC5rxr∴展开式中含x4项的
首先按第一个下标从小到大排列好,然后第二个下标组成1到n的一个排列,这一项的符号就是(-1)^r,其中r是这个排列的逆序数.逆序数的定义是:一个1到n排列中前面的数比后面的数大(不一定要相邻)的二元数