在abc中ab=ac作ad垂直bc的延长线于点d
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:08:16
连接EC∵AB=AC,∴∠ABD=∠ACD又∵AD⊥BC,∴∠ADB=∠ADC=90°可得△ABD≌△ACD∴BD=CD可得△BED≌△CED∴BE=CE∵∠ECF=∠EGC又△ABE≌△ACE∴∠A
过A点分别做AG垂直BE,垂足为G,AH垂直FC,垂足为H.因为MD垂直BC,AG垂直BE,所以可以得到AGBD为矩形,AHDC为矩形.又因为三角形ABE,ACF为等腰直角三角形,所以角ABD=角AC
证明:设AB=a,BD=b,AC=c,CD=d根据题意可得a+b=c+d利用勾股定理可得a²-b²=c²-d²=AD²∴(a+b)(a-b)=(c+d
应该是∠CAD=∠BDE证明:∵AB=AC,AD平分∠BAC∴∠B=∠C,AD⊥BC∵DE⊥AB∴∠B+∠BDE=90°,∠C+∠CAD=90°∴∠CAD=∠BDE
△ABC是等腰三角形,〈C=30度,〈B=〈C=30度,〈A=120度,〈BAD=90度,〈DAC=120度-90度=30度,三角形ADC也是等腰三角形,作DE⊥AC,交AC于E,则DE=AD/2=2
相等,…因为三角形ABC是等腰三…,AD垂直BC,所以BD等于DC,且角B等于角C,又因为角BED等于角DFC,所以三角形BDE全等于三角形CDF,所以DE=DF
∵AB²=BE·BC∴AB:BE=BC:AB∵∠A=∠A∴⊿ABE∽⊿CBA∴∠BAE=∠C∵EF⊥AB,AD⊥BC∴∠AFE=∠ADC=90°∵∠BAE=∠C∴⊿AEF∽⊿ACD∴AE:A
∵AD⊥AB,AE⊥AC,∴∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠BAE=∠DAC,∵AD=AB,AC=AE,∴ΔADC≌ΔABE,∴∠D=∠ABO,(设AB与OD
证明:根据已知条件在三角形ABF和三角形ACE中:角ABF=角CAE,角AFB=角AEC所以,三角形ABF和三角形ACE相似.AB/AC=BF/CE(1)在三角形BDF和三角形CDE中:角BDF=角C
由题可知:AC×BE=AD×BC,AP=AD,所以AC×BE=AP×BC.因为PQ//BC,所以AP/AC=PQ/BC,所以AP×BC=AC×PQ,所以PQ=BE
AC方-AD方=CD方=BC方-BD方所以AC平方-BC平方=AD平方-BD平方AC方=AB*ADBC方=AB*BD所以AC平方-BC平方=AD平方-BD平方=AB(AD-BD)
分析:作CG为△ABC的一条高,DF是△ADC的一条高,DE是△ABD的一条高,能把这三条高联系在一起的是计算它们所在三角形的面积,由面积计算来找它们的数量关系.CG=DE+DF.理由如下:连接AD,
因为BA等于EACA等于FA角BAC等于角EAF所以直三角形BAC全等于直角三角形EAF因为AD垂直BC所以三角形ADC相似于三角形EAF所以角AEM等于角DAC又因为角EAM等于角DAC所以角MAE
因为角C=90度,AC=BC,所以三角形ABC是等腰三角形,则角CAB=45°又因为角AFE是直角,所以三角形AFE是等腰三角形,则AF=EF且AF的平方+EF的平方=AE的平方,所以2EF的平方=A
证明:过点D作DG垂直AB于点G根据题意得:四边形CDBG为矩形所以BG=CD,又因为AB=2CD所以AB=2BG即点G既是AB的垂足又是中点所以三角形ABD是等腰三角形所以角BAD=角ABD又因为E
因为AB*CD=AC*AD所以AB:AC=AD:CD三角形ABC和三角形ADC相似AD是高,三角形ADC是直角三角形所以角A=90度,三角形ABC也是直角三角形直角三角形ABC和直角三角形ABD相似B
设e、f交点为o因为e,f是ab,ac中点所以ef//且=1/2bc=ad又ad垂直bc,所以ef垂直平分ad则ao=do为以ef为直径所做的圆的半径长度.即得bc是切
连接ED,延长ED,CA交于点F,连接BF因为AD垂直平面ABC,EC垂直平面ABC所以AD//EC因为CE=2AD所以AD是三角形FCE的中位线所以AF=AC因为AB=AC所以AB=AF=AC所以角
方法一:延长ED交CA的延长线于F.∵AD⊥平面ABC、CE⊥平面ABC,∴AD∥CE,又CE=2AD,∴AC=AF,又AB=AC,∴AB=AC=AF,∴A是△BCF的外心,∴BF⊥BC.∵CE⊥平面