在rt△abc中角acb90度,角a=60度,D是斜边AB的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:02:58
在rt△abc中角acb90度,角a=60度,D是斜边AB的中点
在Rt三角形ABC中,角B=90度

在三角形BCD中sin15/sin45=10/BC,可以算出BC在三角形ABC中tan30=BC/AB,可以求出AB

在Rt△ABC中,角C=90度.已知Rt△ABC的周长为2+根号6,斜边为2,求此三角形的面积.

设AC=X,则BC=根号6-X由勾股得X²+(根号6-X)²=2²X1=(根号6-根号2)/2,X2=(根号6+根号2)/2面积=1/2(根号6-根号2)/2*(根号6+

在Rt△ABC中

解题思路:熟练掌握三角函数的意义是关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/includ

在直三棱柱ABC-A1B1C1中,底面ABC为直角三角形且角ACB90度 AC=6 BC=CC1=根号2 P是BC1上动

这需要展开图来进行解答,好险我做过,否则折磨死将ΔCBC1,ΔA1BC1展开在一平面,连接A1C则A1C就是所求最小,在ΔA1C1C中,证得角A1C1B=90,角CC1B=45,∴角A1C1C=135

已知:如图在RT△ABC中,

过B点作AC的平行线L1过D点作BC的平行线L2,交L1于点G,交AE于J过点E作AC的平行线L3,交L2于点H连接AG交L3于点I则AD=BC=GD,GH=BE=DC=HE那么角AIE=180°-角

如图所示,在RT三角形ABC中,角ABC等于90度,将RT三角形ABC绕点C顺时针方向旋转60度

∵E在AC上,∴∠ACB=60∵三角形ABC和△ABF对于AB对称∴AF=AC,CF=2CB=AC=AF△ACD中AC=DC,∠ACD=60,∴△ACD为等边三角形∵∠FAC=∠DAC=60所以AF与

在Rt△ABC中,∠C=90°

(1)勾股定理c=根号(4^2+8^2)=20根号2(2)即∠A=30c=2a勾股定理求出a=(10根号3)/3c=(20根号3)/3(3)即∠B=30b=0.5c=10a=10根号3

在线求指导:如图,在Rt△ABC中,

(1)证明:在Rt△ABC中,∵∠ABC=90°,∴∠ABE+∠DBE=90°,∵BE⊥AC,∴∠ABE+∠A=90°,∴∠A=∠DBE,∵DE是BD的垂线,∴∠D=90°,在△ABC和△BDE中,,

在rt三角形abc中 角c等于90度

AC/BC=BC/DC所以△ABC∽△BDC

在Rt三角形ABC中,角ABC等于90读

题目都没有再答:题目都没有再答:题目都没有

在RT三角形ABC中

已知,CM是Rt△ABC斜边上的中线,(题中应该是∠A小于∠B)可得:CM=AM,所以,∠ACM=∠BAC.∠BCD=90°-∠B=∠BAC=∠ACM=∠DCM.因为,∠BCD+∠ACM+∠DCM=9

如图,在Rt△ABC中,

(1)以DE为对称轴,把△ADE翻折至△A'DE,连A'F.A'D=AD=BD,∠A'DE=∠ADE,∠C=∠EDF=90°,∴∠A'DF=90°-∠A'DE=90°-∠ADE=∠BDF,DF=DF,

在RT三角形ABC中,

a+b=4ab=2a^2+b^2=(a+b)^2-2ab=12=斜边的平方RT三角形ABC的外接圆的半径就是斜边的一半所以为根号3

如图,在Rt三角形ABC中,角ABC=30度,

△ABF是由△ABC对折的所以角ACB=角F=60度角BAC=角BAF=90度-60度=30度那么△AFC是等边三角形(AB是中线)所以FC=BC=AD同理可证△ACD是等边三角形(ED是中线)BC=

如图 在Rt三角形ABC中 角ACB90°C垂直AB 垂足为D 若AD=1 BD=4 求CD的长 并

Rt△ACB中,∠ACB=90°,CD⊥AB;∴∠ACD=∠B=90°-∠A;又∵∠ADC=∠CDB=90°,∴△ACD∽△CBD;∴CD2=AD•BD=4,即CD=2.——很高兴为你解答

在Rt△ABc中,角c=90度,c=8,b=3

角度用余旋定理啊,要求出具体数值,需要查询表,

如图 三角形ABC中 角ACB90度 角BAC30度 三角形abe和acd都是等边三角形

刚才那个题已经解答了,请给一个好评好吗再答:这个问题请稍等再答:证明:连AF,FC∵△ABE是等边三角形,BF=EF∴AF是∠BAE的平分线,∴∠BAF=∠BAE=60/2=30°∵∠BAC=30°∴

如图,在Rt三角形ABC中,角ABC等于90度,CD垂直于AB,

相等,因为共圆弧对应角相等,即角DFE=角BCD,角BCD=角BAC.再问:是要求相似三角形吗再答:不需要。