在RT三角形中,BE平分三角形ADC交AC于E,已知AB等于10

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:19:37
在RT三角形中,BE平分三角形ADC交AC于E,已知AB等于10
如图,在Rt三角形ABC中,角BAC=90度,AD垂直BC,垂足为点D,BE平分角ABC,与AD相

如图,⊿EAB≌⊿EGB(AAS)  EG=EA   AB=GB  ∴⊿FAB≌⊿FGB(SAS).GF=FA∠CAD=90&am

在Rt三角形ABC中,求CD

 再问:好像不对再答:嗯再答:过程没错,答案错了,是7╱8再问:可是没有这个选项再答:选择题?再答:把题目全拍过来,快点再问: 再问: 再答:难怪!角c多少度?再问:90

求讲解 在Rt三角形abc中

(如图)将△ABC绕C点顺时针旋转90°,到达△AB'C的位置则∠B'CQ=∠ACP      且CQ=CP=1 

如图,在Rt三角形ABC中,角C=90度,AD平分角BAC,DE垂直平分AB.

  因为  AD平分角BAC    所以     ∠cad=∠dae    因为 

如图,在Rt三角形ABC中,角C=90度,BE平分角ABC交于点E,点D在AB边上且DE垂直BE

(1)∵DE垂直BE∴∠DEB=90度∵直径所对应的角为90度∴AC与三角形DBE外接圆的位置关系是相切(2)由(1)知AC与三角形DBE外接圆的位置关系是相切∴BE垂直AC∵BE平分∠ABC∴AE=

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图在rt三角形abc中 角c= 90度角ABC=30度AD平分角BAC BD平行AC求证AE=BE

此题无图,E点也不明确.设E为AD与BC的交点,则:(1)∵AD为∠A的平分线∴∠BAE=∠ABC=30°∴AE=BE(2)∵在△AEC中∠C=90,∠EAC=30∴CE=1/2AE∵BD∥AC∴∠D

在rt三角形abc中 

C再问:��ô��再答:��BC=1��AC=2��AB�͵��ڸ��5�ˣ�sinA�͵���1/���5�ˡ�再问:�����Ҿ�Ȼ�ܵ���再问:лл

在Rt三角形ABC中,∠ ACB =90,AE平分∠BAC交BC于点E,D为AC上一点,BE=DE

:(AD+AB)除以AC=2作EF⊥AC于F∵∠C=90°∴EC⊥AC于C∵AE平分∠BAC,EF⊥AC于F∴CE=EF(角平分线上的点到角两边距离相等)∵EF⊥AC于F∴∠C=∠EFB=90°在Rt

如图所示,在RT三角形ABC中,角BAC=90度,AD垂直BC于D,BE平分角ABC,AF平分角DAC.求证角BAC全等

题目有误,别白费劲了.再问:打错了,是求角BAE全等于角BFE

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

在RT三角形ABC中

已知,CM是Rt△ABC斜边上的中线,(题中应该是∠A小于∠B)可得:CM=AM,所以,∠ACM=∠BAC.∠BCD=90°-∠B=∠BAC=∠ACM=∠DCM.因为,∠BCD+∠ACM+∠DCM=9

已知,在三角形ABC中,AD平分

由EF垂直平分AD得fa=fd所以,∠fad=∠fda.∠fda=∠bad+∠abd[外角定理]AD平分∠BAC得∠bad=∠dac所以∠bad+∠abd=∠dac+∠cad所以

在RT三角形ABC中,

a+b=4ab=2a^2+b^2=(a+b)^2-2ab=12=斜边的平方RT三角形ABC的外接圆的半径就是斜边的一半所以为根号3

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的

如图,在Rt三角形ABC中,AD平分角BAC,AC=BC,角

解题思路:请把图发过来解题过程:请把图发过来最终答案:略

在Rt三角形ABC中 角BAC=90度 BE平分角ABC AD垂直BC交BC于F FG平行BC求A

证明:过点E做EH⊥BC于H,∵∠ABE=∠HBE,∠BAE=∠BHE=90°,BE=BE∴△ABE≌△HBE∴AE=EH又∵∠AEB+∠ABE=90°,∠BFD+∠FBD=90°且∠ABE=∠FBD

如图,在三角形ABC中,AD平分角BAC,BE平分角ABC,CE平分角ACB的外角

过E分别作BA,BC,AC的垂线,交BA,BC,AC于M,N,P,∵BE平分∠ABC,∴△BEM≌△BEN(A,A,S)∴EM=EN.同理:EP=EN,∴EM=EP,即△AEM≌△AEP(H,L)∴∠