在△abc,∠ACB=90,BC的垂直平分线de交bc于d
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:58:32
∵∠ACB=90°,∠B=30°∴AC=1/2AB∵AC=4∴AB=8∵FA是△CAB的平分线∴∠BAC=∠CAF∵DE‖AC∴∠DFA=∠CAF∴∠BAC=∠DFA∴DA=DF∵BD+DA=AB∴B
设a=2k,则c=3k∵RT△ABC中,∠ACB=90°∴b=√[﹙3k)²-(2k)²]=√5×k∴sinA=a/c=2/3cosA=b/c=√5/3sinB=b/c=√5/3c
(1)∵∠ACB=∠DCA=90°,∠CAD=∠B,∴△ACB∽△DCA,∴ACDC=CBCA,∵AC=2,CB=4,∴DC=1,在Rt△ACD中,DC2+AC2=AD2,∴AD=5,答案为:AD的长
因为△ABC∽CDB所以AC/BC=BC/BD即a/b=b/BD所以BD=b^2/a供参考!
d+df=8因为∠ACB=90°,∠b=30°所以ac=二分之一ab因为ac=4所以ab=8因为fa是△cab的平分线所以∠bac=∠caf因为de‖ac所以∠dfa=∠caf所以∠bac=∠dfa所
这个题目表述不清楚,因为按照你的说法,D无法确定一个准确的位置,应添加条件或一个图.暂且按照D在直线AC延长线上解题.∠ACB=60°,则它的补角∠BCD=120°所以∠DBC=180°-∠BCD-∠
证明:∵AE平分∠BAC∴∠BAE=∠CAE∵∠AEC=∠BAE+∠B,∠CFE=∠CAE+∠ACD,∠ACD=∠B∴∠AEC=∠CFE数学辅导团解答了你的提问,理解请及时采纳为最佳答案.
证明:在Rt△ABC中,∠ACB=90°,∠B=30°,∴AC=12AB,∵CD⊥AB,∴∠CDB=90°,在Rt△BCD中,∠B=30°,∴∠DCB=60°,∴∠ACD=∠ACB-∠DCB=90°-
解题思路:利用圆的知识解题过程:同学你好,请把题目传上来最终答案:略
过点D作DE⊥BC,交BC于点E则∠CED=∠BED=90°∵CD平分∠ACB,∴∠ACD=∠BCD=1/2∠ACB=45°∴在Rt△BDE中,∠B=30°DE=1/2BD=3(30°所对的直角边等于
△ADC中∠DAC+∠D+∠ACD=180°(1)△ABE中∠BAE+∠B+∠AEB=180°(2)AE平分∠BAC,所以∠DAC=∠BAE由(2)和(3)得∠D+∠ACD=∠AEB+∠B∠DCB=∠
http://wenwen.soso.com/z/q153195397.htm?w=%A1%F7ABC%D6%D0%A3%ACAE+%C6%BD%B7%D6%A1%CF+BAC%2C%A1%CFDCB
∵在Rt△ABC中,∠ACB=90°,∠ABC=62°,∴∠A=90°-62°=28°,由旋转的性质可知BC=B′C,∠A′B′C=∠B′BC=∠ABC,∴旋转角∠BCB′=∠ACA′=180°-∠A
若△AEF为直角三角形,则有△DEF∽△CFA∴DE/FC=DF/ACxD=0.5xFDE=xD/√3∴(xD/√3)*√3=(xF-xD)(3-xF)得xF=2点F的坐标是(2,0)
取线段AB的中点,记为M点,故MA=MB=1/2AB(利用直角三角形斜边上的中线等于斜边的一半)得:CM=1/2AB,DM=1/2AB,所以MC=MD=MA=MB所以A.B.C.D四点共圆,圆心是点M
∵∠ACB=90°,∠B=50°∴∠CAB=40°∵AE平分∠CAB∴∠EAB=20°∴∠AEB=70°∵∠ACD=三分之一∠ACB=30°∴∠DCB=60°∴∠CFE=180°-60°-70°=50
∵△ABC以C为中心旋转到△A’B‘C的位置∴△ABC≌△A’B‘C∴∠B'=∠ABC=60°BC=B'C∴⊿BCB'是等边三角形∴∠BCB'=60°∴∠A'CB=30°∴∠BDC=180-°60°-
A'B'=ABA'B'⊥AB,理由如下:延长B'A'交AB于点D∵△CA'B'是由△ABC绕顶点C旋转的到的,∠ACB=90°∴△A'B'C'≌△ABC∴A'B'=AB∠B'=∠B∵∠A+∠B=90°
由三角形BED相似于三角形BCA可得BE:BC=DE:AC即(3-CE):3=DE:4解得DE=12/7再问:第二小题呢再答:还是设正方形的边长是x,利用三角形相似得到MN:AB=CM:CA即x:5=
因为共用∠A,且∠ACD=∠B,所以三角形ABC相似于三角形ACD,所以∠ADC=∠ACB两角对应相等,则两三角形相似;两三角形相似,则三个角对应相等.再问:你不觉得太牵强了吗,不过我问到了再答:这两