在△ABC中,若cos²(2分之A)=2c分之b+c,判断其形状
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:23:57
证明:∵在三角形ABC中,∴A+B+C=180度,得SINA=SIN(B+C)则A/2=90度-(B+C)/2,得COSA/2=SIN((B+C)/2)左边=Sin(B+C)+SinB+SinC则4C
证明:∵在三角形ABC中,∴A+B+C=180度,得SINA=SIN(B+C)则A/2=90度-(B+C)/2,得COSA/2=SIN((B+C)/2)左边=Sin(B+C)+SinB+SinC则4C
sinA=2sinBcosCsin(180-B-C)=2sinBcosCsin(B+C)=2sinBcosCsinBcosC+cosBsinC=2sinBcosCsinBcosC-cosBsinC=0
(1)A+B+C=180°所以cos(A+B)/2=sinC/2所以cos^2(A+B)/2+cos^2(C/2)=1(2)由公式得:cos(π/2+A)sin(3/2π+B)tan(C-π)=-si
由和差化积公式:sinA=sin(B+C)=sinBcosC+cosBsinC=2sinBcosC,所以cosBsinC-sinBcosC=0,即sin(B-C)=0.从而B=C,因此三角形ABC是等
sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]≤2sin[(A+B)/2]=2cosC/2同理,sinB+sinC≤2cosA/2,sinC+sinA≤2cosB/2三式相加,
cos^2A+cos^2B+cos^2C=1cos^2B+cos^2C=1-cos^2Acos^2B+cos^2C=sin^2Acos^2B+cos^2C=sin^2(B+C)cos^2B+cos^2
△abc的形状为:直角三角形.cos^2B-sin^2A=cos^2C,cos^2B-cos^2C=sin^2A,(cosB+cosC)*(cosB-cosC)=sin^2A,利用和差化积,得2*co
COS(A+C)=COS(圆周率-B)COS(A-C)=COS(圆周率-B)+2SinASIinC因为sin²B=sinAsinC所以COS(A-C)=COS(圆周率-B)+2in²
sin²B=sinAsinC.====>2sin²B=2sinAsinC.===>1-cos(2B)=cos(A-C)-cos(A+C).===>cos(2B)=1-cos(A-C
等腰三角形证明:sinAsinB=cos²(C/2)=(cosC+1)/21+cosC=2sinAsinB=cos(A-B)-cos(A+B)cos(A+B)=cos(180-C)=-cos
根据题意sinA-1=0和cosB-根号3/2=0,所以sinA=1,cosB=根号3/2,所以∠A=90度,∠B=30度
等腰证明:sinAsinB=cos²(C/2)=(cosC+1)/21+cosC=2sinAsinB=cos(A-B)-cos(A+B)cos(A+B)=cos(180-C)=-cosC所以
分析:本题主要注意两点:①公式cos2a=2cos²a-1的应用,该公式可引申为cosa=2cos²(a/2)-1②余弦定理公式的应用.证明:∵cosa=2cos²(a/
根据cosC=2cos^2(C/2)-1sinAsinB=0.5*(cosC+1)sinAsinB=0.5cos(pi-A-B)+0.5sinAsinB=-0.5cos(A+B)+0.5sinAsin
tana=sina/cosa=2推出sina=2cosa因为sina*sina+cosa*cosa=1所有4cosa*cosa+cosa*cosa=1cosa*cosa=1/5cosa=根号5/5si
tan(A+C)=-tanB=-sinB/cosB=-cos(C-B)/[2sinCcosB]2sinBsinC=cos(C-B)=cosCcosB+sinBsinCcosCcosB-sinCsinB
cos2A2=1+cosA2=1−cos(B+C)2=sinBcosC∴cosBcosC-sinBsinC=1-2sinBcosC∴cos(B-C)=1∴B-C=0,即B=C∴三角形为等腰三角形.
由cos2A2=910,得cosA=45,又cos2A2=b+c2c,所以cosA=bc,再由余弦定理得b2+a2=c2,因为c=5,所以a=3,b=4.设其内切圆的半径为r,因为S=12(a+b+c
解答第2题吧,第1题需要时间思考...若cos^2A+cos^2B+cos^2C=13-(sin^2A+sin^2B+sin^2C)=1sin^2A+sin^2B+sin^2C=2而,sin^2C=s