在△ABC中,角ACB=90度,CD是高,角A=30度.求证BD=四分之一AB.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:18:14
在△ABC中,角ACB=90度,CD是高,角A=30度.求证BD=四分之一AB.
如图 在rt三角形abc中 角acb等于90度 a=5 c=13 求b

∵是直角三角形∴a²+b²=c²;∴b=√(c²-a²)=√(169-25)=12;∴AC×BC=AB×CD;CD=a×b÷c=12×5÷13=60/

在△ABC中,角ACB=90°,角A=n°(n

答案是(45-n)的绝对值.i)当角A小于45度时,角BCD=角A=n度,因为CE是角平分线,所以角DCE等于(45-n)度.ii)当角A大于45度时,角BCD=角A=n度,因为CE是角平分线,所以角

在RT△ABC中,角ACB=90°,AC=3,BC=4,CD,CE是角ACB的三等分线,求CD的长

我不是很清楚你给的D和E到底在什么位置但是方法是这样的三等分点就是说ACDDCEECB都是30°sinA=0.8,那么∠ADC就是150°-∠AsinADC=sin(150-A)=sin150cosA

已知:如图在三角形ABC中,角ACB=90度,AC=BC,D是AB的中点

(1)连接CD,因为等腰RT△ABC,D是斜边AB中点,所以CD=AD=BD=1/2ABCD⊥AB所以∠A=∠ACD=45°又因为AE=CF所以△ADE≌△CDF(SAS)所以DE=DF(2)因为△A

如图,已知在△ABC中,角ACB=90°,四边形DECF是正方形

设正方形的边长为X三角形AED与三角形DFB下似,有FB:ED=DF:AE即:(8-X):X=X:(24-X),解得X=6又因为三角形AEG与三角形ACF相似,有AE:AC=EG:CF即(24-6):

已知在三角形ABC中,角ACB等于90度,以三角形ACB的各边为边在三角形ABC外作三个等边三角形,则三个等边...

设直角三角形ABC的三边分别为a、b、c,且c为斜边边长,三个等边三角形的面积为Sa、Sb、Sc.则Sa=a方*sin60度/2、Sb=b方*sin60度/2、Sc=c方*sin60度/2,又因a方+

如图,已知三角形ABC中,角BAC=90度,角ABC=角ACB

在RT△BCF中∠CFB=90-∠FBC在RT△BED中∠BED=90-∠FBA所以∠CFB=∠BED因为∠FEC=∠BED(对顶角)所以∠CFB=∠FEC△CEF为等腰三角形所以CF=CE

在直角三角形ABC中,角ACB=90度,CD垂直于AB,CF平分角ACB,AE=BE

∵为直角三角形CE为斜边中线∴AE=BE=CE∴ECB=ABC又∵为直角三角形CD为斜边高线∴ACD=ABC∴ACD=ECB∵CF平分角ACB∴ACF=BCF∴ACF-ACD=BCF-BCE∴角DCF

在三棱锥P—ABC中,ABC是直角三角形,角ACB=90度,PA垂直平面ABC,此图性中有( )个直角三角形

有4个因为PA垂直ABC所以PA垂直ABPA垂直AC垂直BC又因为BC垂直ACAC交PA于P所以BC垂直CP所以BCP是直角三角形

如图,在Rt△ABC中,∠ACB=90度,AC=3,AB=5

∵BC^2=AB^2-AC^2=5^2-3^2=25-9=16.∴BC=4.以AB为轴旋转一周所得的旋转体为同底的两个正圆锥体的组合体.过C点作CD⊥AB于D点(垂足),则CD即为旋转体底面圆的半径R

在三角形ABC中,已知角A+角ABC+角ACB=180度,BO,CO分别平分角ABC和角ACB.

(2)∵BO,CO分别是角ABC,角ACB的角平分线∴∠OBC=1/2∠ABC,∠OCB=1/2∠ACB即∠OBC+∠OCB=1/2(∠ABC+∠ACB)=1/2(180°-∠A)∴∠BOC=180°

在△ABC中,∠ACB=90°

解题思路:利用圆的知识解题过程:同学你好,请把题目传上来最终答案:略

已知在△ABc中,角A=90。,AB=Ac,cD平分角ACB

解题思路:运用三角形全等解答。解题过程:见附件。最终答案:略

已知,如图在三角形ABC中,角ACB=90度

我会再问:快答案再答:在写再问:好快点再答:先采纳吧!再问:好了吗再问:好了吗

如图,在Rt三角形ABC中,角ACB=90度,AC=BC=6

欲使四边形QPCP'为菱形,必须PC=PQ(AC-AD)²+PD²=PE²+(BC-EC-BQ)²∵AP=√2t,∴AD=PD=EC=t(6-t)

如图,已知在△ABC中,角ACB=90°,M为AB中点,DM⊥AB,CD平分∠ACB求证MD=AM

CD平分角ACB,角ACB=90度,则角ECB=45度M为AB中点,则AM=CM=BM,角MCB=角MBC则角MCE=角MCB-角ECB=角MBC-45度角DEM=角CEB=180-角ECB-角MBC