在△ABC中,角C=90°,点O在AB上,以点O为圆心
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:50:51
直角梯形因为点E在AC上,三角形ABC全等于三角形DEC所以角ACB=角ACD=60度又三角形ABC,三角形DEC为直角三角形所以BC=EC=1/2ACAC=CD,角ACD=60度,所以三角形ACD为
(1)由题意,△ABC≌FEC∴AC=FC,BC=EC∴四边形ABFE是平行四边形∴AE∥BF(位置关系),AE=BF(大小关系)(2)平行四边形被两条对角线分成的四个三角形面积相等所以四边形ABFE
(1)第一种情况△PCQ~△ACB2t/10=(5-t)/5t=2.5第二种情况△PCQ~△BCA2t/5=(5-t)/10t=1(2)
没办法,只能拍照片传上来,太难打了.你将就着看.
连接OD,半径r=OE=OF=EC=FCFC=AC-AF=b-AFAF=AD=AB-BD=c-BDBD=BE=BC-EC=a-r所以r=b-(c-(a-r))=b-c+a-r从而2r=a+b-c,r=
以D为圆心,AD的长为半径画圆①如图1,当圆与BC相切时,DE⊥BC时,∵∠ABC=30°,∴DE=12BD,∵AB=6,∴AD=2;②如图2,当圆与BC相交时,若交点为B或C,则AD=12AB=3,
AC旋转的角度等于BC旋转的角度,也就等于∠B,即∠A1CA=∠B,又AC=A1C=4,所以AA1=(8根号5)/5再问:能不能再详细一点,还是不懂再答:在三角形等腰AA1C中,已知两条边和一个角,就
连接AE∵线段AB的垂直平分线交AB于点D,交BC于点E∴AE=BE∵∠C=90°AC=4,CE=3∴勾股定理AE=5∴BE=5如果你认可我的回答,请点击“采纳为满意答案”,祝学习进步!
太感谢LZ了!好久没做到这么有趣的题了!……你的提问中有说“说明下理由”,显然是好学的学生.否则就只要答案了.分析一下题目: (3)中特意用了“直线”这个词,说明这是
四边形ABCG是矩形证明:因为△ABC旋转60度后,E在AC上∴∠ACB=∠DCE=60°∴BE=EC=BC易证AE=EC∵∠AED=∠CED=90°,AE∶DE=CE∶DE=1∶√3∴∠EAG=60
B的对称点为B',连B'P,因为AD是对称轴所以BP=B'P所以EP+BP=EP+PB',当P与D重合时,EP+PB'=EB',此时△BEP的周长为BE
完整问题为在直角三角形ABC中,∠C=90°,AC=12,BC=16,点O为△ABC的内心,点M为斜边AB的中点,求OM的长过O作OD⊥AB于D设BD=x∵∠C=90°,AC=12,BC=16∴AB=
请问一下,你是不是没有写上BC的原长啊?设BC=m,则有S△PCQ=0.5*CP*CQ=0.5*2t*(m-t)=8,这样你就能解到t为多少了t=+-sqrt(m^2-32)/2+0.5再问:饿饿。是
1.如果圆C与斜边AB有且只有一个公共点,那么圆C半径长R的取值是4.8和大于6小等于82.圆C与斜边AB有两个公共点,那么圆C半径长R的取值范围是大于4.8小等于63.圆C与斜边AB没有公共点,那么
证明:∵∠ABC=90° ∴AB⊥BC &nbs
取AB中点E,连接EC∵E为AB中点且△ABC为直角三角形∴AE=BE=1/2AB,CE=1/2AB(直角三角形斜边上的中线等于斜边的一半)∴AE=BE=CE∴A,B,C三点在以E为圆心的圆上
用正弦定理BD/sina=BC/sinD,a=60°,三角形BCD中角D=180°-60°-45°=75°.带入数据可得BD= 如果没学过该定理,那么可以从C点作一条垂直于AB的
∵∠C=90°,BD是△ABC的角平分线,∵将△BCD沿着直线BD折叠,∴C1点恰好在斜边AB上,∴∠DC1A=90°,∴∠ADC1=∠ABC,∵AB=5,AC=4,∴sin∠ADC1=45.故答案为