在△ABC中∠ACB=90°CD⊥AB于Dtan∠B=三分之一且BC=9
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:54:10
1)△ADA′等腰则只能AD为底边,则∠DAA′=∠ADA′∠ADA′=∠ACA′+∠BAC=a+30CA′=CA=>∠CAA′=∠CA′A∠CAA′+∠AA′C+∠ACA′=(a+30+30)+(a
设a=2k,则c=3k∵RT△ABC中,∠ACB=90°∴b=√[﹙3k)²-(2k)²]=√5×k∴sinA=a/c=2/3cosA=b/c=√5/3sinB=b/c=√5/3c
1、AC=4,tan∠BAC=3/4.可知BC=3,则B点的坐标就是(1,3),函数y=kx+b,分别代入A,B两点坐标,k=3/4,b=9/4,函数解析式是:y=3/4x+9/4.2、因为三角形AB
=12cd=60/13再问:我要过程。。再答:b=根号(c²-a²)=根号(13²-5²)=12sinA=a/c=CD/b所以5/13=CD/12CD=5/13
∵△A1B1C为△ABC旋转所得∴△A1B1C≌△ABC∴∠B1A1C=∠A∵∠ACB=90°,CM是斜边AB上的中线∴CM=AM∴∠A=∠MCA,∠MCA+∠A1CB=90°∴∠B1A1C+∠A1C
证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠
(1)∵AD=A'D,由AC=A’C,∴B’D=CD,∵∠B=∠DCB'=60°,∴α=90°-60°=30°.(2)在△ACA’中,AC=A'C=10√2,夹角∠ACA’=45°,过A作AP⊥A’C
解题思路:利用圆的知识解题过程:同学你好,请把题目传上来最终答案:略
解题思路:要证明四边形ACEF是平行四边形,需求证CE∥AF,由已知易得△BEC,△AEF是等腰三角形,则∠1=∠2,∠3=∠F,又∠2=∠3,∴∠1=∠F,∴CE∥AF解题过程:答案见附件最终答案:
角ACB=90°,角ACB=30度这个角很神奇
证明:延长DF交AB于点G∠CDG=∠ACB=90DG‖BCDG为中位线DG=1/2BC=1/2AC(AB=AC)DC=1/2ACDG=DCDF=DEDG-DF=DC-DEFG=EC(1)∠CDG=9
1)∵AB=4,∠ACB=90°,∠ABC=30°∴AC=1/2×4=2∴BC=√(4²-2²)=2√3∴A点坐标(0,2),B点坐标(2√3,0)2)三角形平移后,A点坐标为(-
∵在Rt△ABC中,∠ACB=90°,∠ABC=62°,∴∠A=90°-62°=28°,由旋转的性质可知BC=B′C,∠A′B′C=∠B′BC=∠ABC,∴旋转角∠BCB′=∠ACA′=180°-∠A
∵△ABC以C为中心旋转到△A’B‘C的位置∴△ABC≌△A’B‘C∴∠B'=∠ABC=60°BC=B'C∴⊿BCB'是等边三角形∴∠BCB'=60°∴∠A'CB=30°∴∠BDC=180-°60°-
A'B'=ABA'B'⊥AB,理由如下:延长B'A'交AB于点D∵△CA'B'是由△ABC绕顶点C旋转的到的,∠ACB=90°∴△A'B'C'≌△ABC∴A'B'=AB∠B'=∠B∵∠A+∠B=90°
用正弦定理BD/sina=BC/sinD,a=60°,三角形BCD中角D=180°-60°-45°=75°.带入数据可得BD= 如果没学过该定理,那么可以从C点作一条垂直于AB的
证明:设AB交DE于O∵AD⊥AB,BE⊥DC,AF⊥AC∴∠DAB=∠CEB=∠CAE=∠ACB=90º∵∠D=90º-∠AOD∠ABF=90º-∠BOE∠AOD=∠B
(1)∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC与△CEB中,∠AD
因为角ACB=90度所以sinB=BC/ABS三角形ABC的面积=1/2AC*BC=1/2*BC*AB*sinB因为AC*BC=1/4AB^2所以1/4AB^2=BC*sinBsin*B*(BC/AB
(1)(a+b)²=a²+b²+2ab(c+h)²=c²+h²+2ch而ab=ch(根据三角形的面积得出)a²+b²=c