在△abc和△ADE中
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:18:25
你的问题还差条件,AB/AD=AC/AE=?,题意是考察两相似三角形相似比与两三角形周长比之间的关系,而相似比的比值是多少这是解题的关键.
证明:DE‖BC所以角ADE=角ABF(同位角)EF‖AB所以角EFC=角ABF(同位角)角CEA=角EAD(同位角)因此,在三角形ADE和三角形EFC中,有:角ADE=角ABF=角EFC角CEA=角
(1)△ABC∽△ADE,△ABD∽△ACE(2分)(2)①证△ABC∽△ADE,∵∠BAD=∠CAE,∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.(4分)又∵∠ABC=∠ADE,∴
△ABD∽△ACE你已经证明△ABC∽△ADE那么得AB/AC=AD/AE∠BAD=∠CAE△ABD∽△ACE(边角边)
证明:∵AB•AD=AC•AE,∴ABAC=AEAD;又∵∠CAE=∠BAD,∴∠CAE+∠DAC=∠BAD+∠DAC,即∠DAE=∠CAB;∴△ADE∽△ACB;又∵S△ADE=4S△ACB,∴S△
可以根据相似三角形来做∵在三角形ABC和三角形ADE中,AB:AD=4:3∴S△ABC:S△ADE=16:9∵S△ABC=48∴S△ADE=48×9/16=27
根据您的问题,我做出如下回答:因为:∠BAD=∠CAE所以:∠BAD+∠DAC=∠CAE+∠DAC即:∠ABC=∠DAE又因为:∠ABC=∠ADE所以相似.
相似因为∠BAD=∠CAE,所以∠BAC=∠DAE又因为∠ABC=∠ADE所以△ABC∽△ADE所以AD/AE=AB/AC在△ABD和△ACE中AD/AE=AB/AC,∠BAD=∠CAE所以△ABD∽
(1)连接AM,延长BM交AC于P则AM=CM=EM易证△ADM≌△EDM所以∠EDM=∠ADM又因为∠ADE=∠BDE=90°所以∠BDM=45°因为AM=CM则M在线段AC的垂直平分线上所以BP⊥
好了自己看图就行了再问:C和E标错位置了,B和D也是对换再答:如果C和E标错位置了,那么△ABC的面积:△ADE的面积怎能是4:9,应该是9:4才对你看看是否是题错了
原题无误!由题意知:M是CE中点,而△CDE与△EBC是直角三角形,所以EM=MC=MD=MB,所以BM=DM以M点为圆心,MC为半径做圆,则D、B、C、E均在所作的圆周上,因为M是圆心,则∠BMD=
ADE面积:EFC面积=(DE:FC)^2,所以DE:FC=2:3所以DE:BC=2:5.ADE面积:ABC面积=(DE:BC)^2,所以ABC面积=5cm^2同理,ABC面积=根号S1+根号S2
1)证:Rt△ABC中,因为AB=CB;所以角A=角C=45°Rt△ADE中,AD=DE,所以角AED=角ADE=45°因为M是EC中点所以MB=MC=ME=MD角EMD=角MCD*2;角EMB=角B
因为∠BAD=∠CAE,所以∠BAD+∠CAD=∠CAE+∠CAD,即∠BAC=∠DAE.在△ABC和△ADE中,因为AC=AE,∠C=∠E,∠BAC=∠DAE,由角边角定理,△ABC≌△ADE.
∠EAD=∠1+∠EAB,∠BAC=∠2+∠EAB因为∠1=∠2,所以∠EAD=∠BAC又∠E=∠B,AC=AD角角边全等定理△ABC≌△ADE
(1)证明:在△ABC和△ADE中∠BAC=∠DAEAB=AD∠B=∠D,∴△ABC≌△ADE;(2)∵△ABC≌△ADE,∴AC=AE,∴∠C=∠AEC=75°,∴∠CAE=180°-∠C-∠AEC
图中相似三角形有△ABC与△ADE,△ABD与△ACE证明:∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,∠BAD=∠CAE∴∠BAC=∠DAE∵∠ABC=∠ADE∴△ABC相似于△A
(1)∵∠BAD=∠CAE,∠DAC=∠DAC.∴∠BAC=∠DAE,又∵∠ABC=∠ADE.∴△ABC∽△ADE,(AA)∴AB:AC=AD:AE°∵∠BAD=∠CAE∴△ABD∽ACE(SAS)(