在三棱锥p-abc中,pa=pb=pc=ab,且角bac=90

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:29:58
在三棱锥p-abc中,pa=pb=pc=ab,且角bac=90
在三棱锥p-ABC中,顶点p在平面ABC内的射影是三角形ABC的外心.求证:PA=PB=PC

晕,这么简单的一道题,上课估计没听讲吧依题,P在ABC的射影设为O,则OA=OB=OC,因为是ABC的外心,即OA=OB=OC为半径,又OP是射影,故OP垂直于ABC,那么对于三角形OPA=OPB=O

在三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC

取AC中点D,连结PD,DB.因为PA=PC,所以三角形PAC为等腰三角形,D为AC中点,所以PD⊥AC.又因面PAC⊥面ACB,面PAC∩面ACB=ACPD在面PAC内,PD⊥AC所以PD⊥面ACB

在三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,则三棱锥体积为

/>正三角形的高是2*(√3/2)=√3底面的面积S=2*√3*(1/2)=√3所以,体积=S*PA/3=√3*3/3=√3

三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,则三棱锥P-ABC的体积等于______

三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,所以底面面积为:3;三棱锥的体积为:13×3×3=3故答案为:3

在三棱锥P—ABC中,PA=PB=PA,O为外心,求证:PO垂直于平面ABC

1.连接po因为o是外心所以ao=bo=co取AB边中点d连接odpd因为oa=ob所以oa垂直ab同理pd垂直ab所以ab垂直平面pdo所以po垂直于ab2同理po垂直bc因为abbc交于b点所以p

在三棱锥P-ABC中 顶点P在平面ABC内的射影是三角形ABC的外心 求证PA=PB=PC

设P在平面ABC射影为O,则PO⊥平面ABC,O是三角形的外心,则AO=BO=CO,〈POA=〈POB=POC=90度,PO=PO=PO(公用边),RT△PAO≌RT△PBO≌RT△PCO,∴PA=P

1.在三棱锥P-ABC中,侧面PAC与面ABC垂直,PA=PB=PC=3

图片版答案:(写了一整个下午呀,一定要选俺的)

在三棱锥P-ABC中,底面ABC为直角三角形,AB=BC,PA=2AB,PA⊥平面ABC

第一个问题:∵PA⊥平面ABC,∴BC⊥PA.∵△ABC是直角三角形,且AB=BC,∴BC⊥AB.由BC⊥PA、BC⊥Ab、AB∩PA=A,得:BC⊥平面PAB,∴BC⊥PB.第二个问题:过B作BE⊥

在三棱锥P-ABC中,顶点P在平面ABC内的摄影是三角行ABC的外心,求证PA=PB=PC

证明:设外心为O,故OA=OB=OC(OA,OB,OC均为外接圆的半径)角POA=POB=POC=90°公共边为PO所以△POA全等于△POB全等于△POC所以PA=PB=PC

在三棱锥P-ABC中,顶点P在平面ABC内的射影是三角形ABC的外心,求证:PA=PB=PC

设射影为O,连接PO、OA、OB、OC易知,PO⊥OA、PO⊥OB、PO⊥OC又,O为△ABC的外心所以,OA=OB=OC所以,Rt△POA≌Rt△POB≌Rt△POC所以,PA=PB=PC

在三棱锥P-ABC中,底面ABC为直角三角形,AB=BC,PA⊥平面ABC

由AB=BC,ABC为RT三角形,所以AB⊥BC,又PA⊥面ABC所以pB⊥BC(三垂线定理),pA=4=2AB,所以AB=2,Ac=2√2,pB=2√5,pC=2√6,Vp-BCD=VD-PBC,即

在三棱锥P-ABC中 PA=PB=PC D为AC中点 正 PD⊥平面ABC

1、作PH⊥平面ABC于点H,可以证明:三角形PAH、三角形PBH、三角形PCH全等,得:HA=HB=HC,即点H是三角形ABC的外心,而三角形ABC的外心是D,即点H与点D重合,得:PD⊥平面ABC

在三棱锥P-ABC中,PA=PB=PC,试证:点P在平面ABC上的正投影O为三角形ABC的外心

证全等三角形,PA=PB,PO=PO,所以PAO全等于PBO,所以AO=BO,同理证AO=BO=CO,这不就是外心吧

在三棱锥P-ABC中

解题思路:利用均值不等式计算。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/re

如图,在三棱锥P-ABC中,PA垂直平面ABC,BC垂直PB

取PC的中点O,连结OA、OB∵∠PAC=90°,∴OA=OP=OC∵∠CBP=90°,∴OB=OP=OC∴OA=OP=OB=OC∴P、A、B、C在同一个球面上

在三棱锥P-ABC中,侧面PAC垂直面ABC,PA=PB=PC=3 求AB垂直BC

设D,E为AC,AB中点,连接PE,PD,DE因为PA=PB=PC所以PD垂直于AC,PE垂直于AB又因为侧面PAC与底面ABC交于AC所以PD垂直于底面ABC因为AB属于底面ABC所以AB垂直于PD

在三棱锥P-ABC中,PA,PB,PC两两成60°角,PA=a,PB=b,PC=c,则三棱锥P-ABC的体积等于

先画出一个三棱锥过P做BC边高PD过A做PD边高AH先求PBC底面对应的高AHPH=PA*1/2*√3/2=√3/4*aAH^2=PA^2-PH^2=a^2-3/16a^2=13/16a^2AH=√1

在三棱锥P-ABC中,PA,PB,PC两两成60°角,PA=a,PB=b,PC=c,求三棱锥的体积

不妨设a>b,a>c,则可以先构造一个正四面体P-AMN,其中,B在PM上,C在PN上;可先求出正四面体的体积,再根据V(PAMN)/V(PABC)=PA/PA*PM/PB*PN/PC求出PABC的体

在三棱锥P-ABC中,PA=PB=PC=3

过点P作PH⊥平面ABC于H,则∵AH是PA在平面ABC内的射影,∴∠PAH是直线PA与底面ABC所成的角,得∠PAH=60°,∴Rt△PAH中,AH=PAcos60°=32,PH=PAsin60°=