在三棱锥pabc中pa垂直平面abc,角bac=90度,d,e,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:26:08
在三棱锥pabc中pa垂直平面abc,角bac=90度,d,e,
在三棱锥P-ABC中,PA垂直于平面ABC,平面PAB垂直于平面PBC,求证:BC垂直于AB

过A作AD⊥PB交PB于D.∵面PAB⊥面PBC,而PB是面PAB和面PBC的交线,又AD⊥PB,∴AD⊥面PBC,得:AD⊥BC.∵PA⊥面ABC,∴PA⊥BC.∵AD⊥BC,PA⊥BC,而PA∩A

如图,三棱锥P-ABC中,PA垂直于平面ABC,平面PAC垂直于平面PBC,则三角形

由二面角的平面角定义又PA|ABC得PA|AB,PA|AC.则角BAC为B-PA-C的平面角,又PAB|PAC,故BAC直角.

在四面体PABC中,PA,PA,PA两两垂直,设PA=PB=PC=a,求点P到平面ABC的距离

画一个正方体出来取一个顶点和三条边就行了最后答案是3分之根号3A

已知三棱锥P-ABC,点PABC都在半径为2分之根3的球面上,若PA.PB.PC.两两垂直且相等,则ABC的面积为

这个问题是个特例,给你这样说吧,半径为r的球内接正方体的边长为三分之二倍根号三r,而你要求的三棱锥恰好是这个内接正方体一个顶点处的切削体,所以我们设正方体边长为a时,则a=三分之二倍根号三r,你把半径

在三棱锥P—ABC中,PA垂直平面ABC,AB垂直BC,PA=AB,D为PB的中点,求证AD垂直PC

证明:∵PA=AB,∴AD⊥PB,∵PA⊥平面ABC∴PA⊥BC,又BC⊥AB,∴BC⊥平面PAB∴BC⊥平面AD∴AD⊥平面PBC,∴AD⊥PC

在三棱锥P—ABC中,ABC是直角三角形,角ACB=90度,PA垂直平面ABC,此图性中有( )个直角三角形

有4个因为PA垂直ABC所以PA垂直ABPA垂直AC垂直BC又因为BC垂直ACAC交PA于P所以BC垂直CP所以BCP是直角三角形

在三棱锥P—ABC中,PA=PB=PA,O为外心,求证:PO垂直于平面ABC

1.连接po因为o是外心所以ao=bo=co取AB边中点d连接odpd因为oa=ob所以oa垂直ab同理pd垂直ab所以ab垂直平面pdo所以po垂直于ab2同理po垂直bc因为abbc交于b点所以p

在三棱锥P-ABC中,PA垂直平面ABC,AB垂直AC,D,E,F分别是棱PA,PB,PC的中点,连接DE,DF,EF,

三棱锥的高一定,底面是斜边为定长的直角三角形.设两直角边为,a,b.满足条件a^2+b^2=4.当ab最大时,底面积最大..由于有关系式:a

在三棱锥p abc中,PA垂直于平面ABC,AC垂直BC.求证BC垂直平面PAC

PA⊥平面ABC,BC∈平面ABC,PA⊥BC,BC⊥AC(已知),AC∩AP=A,∴BC⊥平面PAC

在三棱锥PABC中,侧面PAC与底面ABC垂直,PA=PB=PC,求证AB垂直BC

设D,E为AC,AB中点,连接PE,PD,DE因为PA=PB=PC所以PD垂直于AC,PE垂直于AB又因为侧面PAC与底面ABC交于AC所以PD垂直于底面ABC因为AB属于底面ABC所以AB垂直于PD

已知三棱锥PABC的三条侧棱PA,PB,PC两两互相垂直且长度分别为a,b,c,试求该三棱锥外接圆的表面积

是外接球的表面积吗?三条侧棱PA,PB,PC两两互相垂直,则外接球就是以PA、PB、PC为棱的长方体的外接球,直径D=√(a^2+b^2+c^2),半径=√(a^2+b^2+c^2)/2,外接球的表面

在三棱锥P-ABC中,PA垂直平面ABC,AB垂直BC,PA=AB,D为PB的中点,求证:AD垂直CD

由于PA⊥面ABC则PA⊥BC而BC⊥AB则BC⊥面PAB即:BC⊥AD又有AP⊥AB且PA=AB则△PAB为等腰直角三角形,AD⊥PB加上前面AD⊥BC即:AD⊥面PBCCD在面PBC上即:AD⊥C

在三棱锥pabc中,点p在平面abc上的射影o是三角形abc的垂心,求证pa垂直bc

因为po垂直底面,所以po垂直bc因为ao垂直bc,所以bc垂直ao,op确定的平面所以pa垂直bc

在三棱锥P-ABC中,PA垂直平面ABC,AB垂直BC.求证平面PBC垂直平面PAB

PA垂直平面ABC,那么PA垂直BCAB垂直BC,且AB是平面PAB的线所以BC垂直平面PABBC是面PBC的线所以平面PBC垂直平面PAB

如图,在三棱锥P-ABC中,PA垂直平面ABC,BC垂直PB

取PC的中点O,连结OA、OB∵∠PAC=90°,∴OA=OP=OC∵∠CBP=90°,∴OB=OP=OC∴OA=OP=OB=OC∴P、A、B、C在同一个球面上

在三棱锥p-abc中,底面abc为直角三角形ab=bc,pa垂直平面abc若d为ac的中点,且pa=2ab=4,求三棱锥

先求A到PBC的距离,D到PBC的距离等于它的一半.V=(1/3)*(1/2)*2*2*4=8/3三角形PBC的面积的三边为2根5、2根5、2根2P到BC上的高=根号(20-2)=3根2S=(1/2)