在三角形ABC中,A=90,AB=1,AC=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:09:18
在三角形ABC中,A=90,AB=1,AC=2
在三角形ABC中,证明:a=bcosC+ccosB

过A向BC作垂线,在每个直角三角形里把分出的线段表示出来,一条是bCOSC,一条是cCOSB,加起来就是a了~

在三角形ABC中,已知c=2a cosB,怎么判断三角形ABC的形状

化为c/a=2cosB又c/a=sinC/sinA所以sinC=2sinAcosB因为A+B+C=180sinC=sin(A+B)=sinAcosB+sinBcosA于是sinAcosB=sinBco

在三角形ABC中,证明a=bCosC+cCOSb.

过A做AD垂直于BC,垂足为D(其实就是做高)可以证明BD=c*cosB,CD=b*cosC而a=BD+DC得证

在三角形ABC中 证明S三角形ABC=a^2/[2(cotB+cotC)]

结论是S=a^2(cotB+cotC)/2吧设A点到BC的距离为h(即高),垂足为DBD=h*cotBCD=h*cotCa=BC=h(cotB+cotC)S=ah/2=a^2(cotB+cotC)/2

在三角形ABC中 证明S三角形ABC=[a^2sinBsinC]/2sin(B+C)

设三角形的顶点为A、B、C,对应的边长为a、b、c.过顶点B做AC边上的垂线,设垂线长度为h,则有h=asinC.SΔABC=h*b/2=absinC/2正弦定理a/sinA=b/sinB可得b=as

在三角形ABC中,角A

(1)过P作PH⊥BC于H,则PH∥AC;Rt△ABC中,AC=6,BC=8;则AB=10.∵P为AB上动点可与A、B重合(与A重合BP为0,与B重合BP为10)但是x不能等于5.∵当x=5时,P为A

在三角形ABC中,已知a*cosA=b*cosB,试判断三角形ABC形状

正弦定理a/sinA=b/sinB=>a/b=sinA/sinBa*cosA=b*cosB=>a/b=cosB/cosA则cosB/cosA=sinA/sinB即sinAcosA-cosBsinB=0

在三角形ABC中,角C=90度,若a=b=1,求S三角形ABC

等腰rt三角形=>S=ab/2=1*1/2=1/2...ans

在三角形ABC中,若AC=bc=ca=a,三角形abc面积

三角形的面积=4分之根号3a²再问:亲,咱写点过程,好吗,谢啦。再答:边长是a,高与边长在一个直角三角形内,两个锐角分别是30°和60°,所以高是4分之根号3a所以面积是4分之根号3a

在三角形ABC中,若cosB/cosA=a/b,则三角形ABC的形状是?

∵cosB/cosA=a/b又:根据正弦定理:a/b=sinA/sinB∴cosB/cosA=sinA/sinB∴cosAsinA=cosBsinB∴2sinAcosA=2sinBcosB∴sin2A

在三角形ABC中,sin^2A

a²≤b²+c²-bcbc≤b²+c²-a²1/2≤(b²+c²-a²)/2bccosa≥1/2a≤60°

在三角形ABC中,已知内角A=60°,

2√3/sin60°=AC/sinxAC=(2√3/sin60°)sinx2√3/sin60°=AB/sin(180°-60°x)AB=(2√3/sin60°)sin(180°-60°-x)AB=(2

在三角形abc中角b等于90度,若c-a=6,则三角形abc的面积是多少

最常见的勾股玄:3、4、5(5-3=2)于是有:6、8、10(10-6=4)于是有:9、12、15(15-9=6)于是面积:9*12/2=54

在三角形ABC中,角C=90,若a+b=14,c=10,求s三角形ABC

a²+b²=c²=100(a+b)²=14²=196a²+2ab+b²=196∴ab=48∴SΔABC=1/2×ab=24希望帮助

在三角形ABC中,若sin(A/2)=cos((A+B)/2)则三角形ABC一定为何种三角形?

sin(A/2)=cos((A+B)/2),得sin(A/2)=cos(90度-(C/2))=sin(C/2)就有A/2=C/2或A/2=180度-C/2,故A=C(A+C=360度舍去),因此三角形

在三角形ABC中,角ABC=90,AD=BD,角A=30求证三角形BDC是等边三角形

因为AD=BD,所以∠A=∠ABD=30°,又因为∠ABC=90°,所以∠DBC=60°又因为∠ACB=60°,所以得出∠BDC=60°所以△BDC为等边三角形

在三角形ABC中,B(-2,0),C(2,0),A(X,Y)若三角形ABC中角A=90度,则A的轨迹方程是多少?

向量AB=OB-OA=(-2-x,-y),向量AC=OC-OA=(2-x,-y),因为三角形ABC中角A=90度,故向量AB与向量AC的数量积为0,即x^2-4+y^2=0,x^2+y^2=4.还有一