在三角形ABC中,AB AC,BG垂直AC于点G,DE垂直AB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:13:01
在三角形ABC中,AB AC,BG垂直AC于点G,DE垂直AB
在三角形ABC中,已知b.cosC=c.cosB判断三角形ABC的形状

由正弦定理,b/sinB=c/sinC得b=sinB·c/sinC代入原式得cosC·sinB·c/sinC=c·cosBsinB·cosC=sinC·cosBsinB·cosC-sinC·cosB=

在Rt三角形ABC中,角B=90度

在三角形BCD中sin15/sin45=10/BC,可以算出BC在三角形ABC中tan30=BC/AB,可以求出AB

在三角形ABC中角A、B、C

角A、C、B成等差数列,角A-角C=角C-角B,角A+角B=2角C.角C=90度.(1)c的长=根号下41.(2)面积=1/2*5*4=10

在三角形ABC中 证明S三角形ABC=[a^2sinBsinC]/2sin(B+C)

设三角形的顶点为A、B、C,对应的边长为a、b、c.过顶点B做AC边上的垂线,设垂线长度为h,则有h=asinC.SΔABC=h*b/2=absinC/2正弦定理a/sinA=b/sinB可得b=as

如图在Pt三角形abc中,角abc等于九十度分别以abac为边向三角形abc外作正方形ABDE 和

延长AH于I,使IG平行于BC∵IG平行于BC,∠ABC=90°∴∠GIA=90°∵∠IAG+∠BAC=90°,∠BAC+∠ACB=90°∴∠IAG=∠ACB在△ABC与△GIA中∵AC=AG,∠GI

在三角形ABC中,已知a*cosA=b*cosB,试判断三角形ABC形状

正弦定理a/sinA=b/sinB=>a/b=sinA/sinBa*cosA=b*cosB=>a/b=cosB/cosA则cosB/cosA=sinA/sinB即sinAcosA-cosBsinB=0

如图分别以ABAC为腰在三角形ABC的形外作两个等腰直角三角形三角形ABD和ACE

BE=DC且BE⊥DC∵∠BAD=∠CAE=90°∴∠BAD+∠BAC=∠CAE+∠BAC即∠DAC=∠BAE又∵AD=ABAC=AE∴△DAC≌△BAE∴BE=CD∠DCA=∠BEA∵∠CAE=90

已知,在三角形abc中,abac的垂直平分线分别交bc于点ef.如图一,角b等于角c等于30度,求角eaf的度数

/>∵∠BAC=130∴∠B+∠C=180-∠BAC=50∵AB、AC的垂直平分线分别交于BC于E、F∴AE=BE、AF=CF∴∠BAE=∠B、∠CAF=∠C∴∠EAF=∠BAC-(∠BAE+∠CAF

在三角形ABC中,若a^2+b^2

用余弦定理:c^2=a^2+b^2-2*a*b*CosC∴a^2+b^2

在三角形ABC中,b=asinC,c=acosB,试判断三角形ABC的形状。

解题思路:利用正弦定理化边为角,然后用两角和与差的正弦公式进行化简解题过程:

在三角形ABC中,(角B

如图:在图1中:在三角形DEF中,∠DEF=90-∠FDE,在三角形BDA中,∠FDE=180-∠B-∠BAD=180-∠B-1/2∠A,在三角形ABC中,∠A=180-∠B-∠C,所以,∠FDE=1

三角形ABC中,∠B

易证三角形ADC是等腰三角形,所以∠ADC=∠C∠ADC=∠B+1/3∠A∠A+∠B+∠C=180°所以∠A+∠B+(∠B+1/3∠A)=180°作ED//AF则∠EDA=∠EAD,所以ED=EA而B

在三角形ABC中B(-6.0)C(6.0)直线ABAC的斜率为9/4则顶点A的轨迹

A(x,y)kAB=y/(x+6)kAC=y/(x-6)kAB*kAC=9/4y/(x+6)*y/(x-6)=9/44y^2=9(x^2-36)9x^2-4y^2=9*36x^2/36-y^2/81=

在三角形ABC中 COS(B+C)=COSA吗

B+C=180-ACOS(180-A)=-COSA诱导公式

如图9,已知在三角形ABC中,𠃋BAC=130度,ABAC的垂直平分线分别交于BC于E,F,求ƒ

∵∠BAC=130∴∠B+∠C=180-∠BAC=50∵AB、AC的垂直平分线分别交于BC于E、F∴AE=BE、AF=CF∴∠BAE=∠B、∠CAF=∠C∴∠EAF=∠BAC-(∠BAE+∠CAF)=

如图三角形abc中ab等于ac,点pq分别在abac上,且bc等于cp等于pe等于aq求角a的度数.

哪来的pe呀,图上再问:bc等于cp等于pq等于aq再问:再问:再问:在不再答:在再问:知道不?再答:等下,现在没笔再问:好了吗?再问:在不在再问:我赶时间再问:还要看书再答:现在在做,你先看书再问:

在三角形ABC中,

已知,AD=AC,BE=BC,可得:∠ADC=∠ACD,∠BEC=∠BCE,即有:∠EDC=∠ACD=∠ACE+∠ECD,∠DEC=∠BCE=∠BCD+∠ECD,∠ECD=180°-(∠EDC+∠DE

在三角形ABC中

解题思路:根据题意,由正弦定理和余弦定理可求解题过程:见附件最终答案:略