在三角形abc中,b^2 c^2-a^2=bc,向量AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:49:02
在任意△ABC中,存在:a/sinA=b/sinB=c/sinC=2R,其中R是△ABC外接圆半径.所以a=2RsinA,b=2RsinB,c=2RsinC根据题意4RsinA=2RsinB+2Rsi
设三角形的顶点为A、B、C,对应的边长为a、b、c.过顶点B做AC边上的垂线,设垂线长度为h,则有h=asinC.SΔABC=h*b/2=absinC/2正弦定理a/sinA=b/sinB可得b=as
sin²A+sin²B=2sin²C由正弦定理a^2+b^2=2c^2代入余弦定理:cosC=(a^2+b^2-c^2)/(2ab)=c^2/(2ab)>0所以:cosC
余弦定理b^2=a^2+c^2-2accosBb^2=a^2+c^2-ac,(a+c)^2/4=a^2+c^2-ac,a=c,等腰三角形,B等于60度,三角形ABC为等边三角形
解一:排序不等式设a≥b≥c可知a(b+c-a)≤b(c+a-b)≤c(a+b-c),排序不等式:倒序小于乱序a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤ba(b+c-a)+cb(c+
由正弦定理有a/c=sinA/sinC因为(2a-C)/C=tanB/tanC所以2a/c-1=tanB/tanC2sinA/sinC-1=sinBcosC/cosBsinC2sinAcosB-cos
=ccosA,2b^2=b^2+c^2-a^2c^2=b^2+a^2,直角三角形c=2acosB=2asinAa/c=sinA,c=2a*(a/c)c=√2a,A=B=45°,等腰直角三角形
因为a^2=b(b+c),(sinA)^2=(sinB)^2+sinBsinC,(sinA)^2=(sinB)^2+sinBsin(A+B)所以(sinA+sinB)(sinA-sinB)=sinBs
你在搞笑吗?再问:你是在逗我再答:你这题目有问题吧,而且sinA:sinB:sinC=A:B:C这个是本来就成立的~!再问:原题就是这再答:等边三角形可以的。等边三角形的面积就是根号3
∠CBD+∠C=∠ADB∠CBD=2∠C=2∠CBD又因为∠A=∠A所以▲ADB≌▲ABC所以AD:AB=AB:CD=BD:BC
cos²(A/2)=(b+c)/2c2cos²(A/2)-1=cosA=b/c说明是个直角三角形
30度再答:望采纳再问:为什么呢?再答: 再答:在上课偷偷拍的见谅再答:说反了,是60度再答:把三十换60再问:谢谢谢谢,太棒了,我就说选项怎么没有再答:第一次答错了,不要怪罪再问:突然有个
应该是sqrt(a-b+c)²三角形两边之和大于第三边所以a+c>ba-b+c>0|a-b+c|=a-b+ca+b>cc-a-
证明:因为a^2=b^2+c^2-2bccosA,又由题意知,a^2=b^2+bc所以c^2-2bccosA=bc则c=b(1+2cosA)所以由正弦定理c/sinC=b/sinB得sinB+2cos
(1)A-C=pi/3A+C=pi-B所以:2A=4pi/3-B即:A=2pi/3-BC=pi-A-B=pi/3-B/2(2)由正弦定理及“a+c=2b”,得:sinA+sinC=2sinBsinA+
c/2c不就是1/2题目有问题吧再问:不不不,.是(b+c)/2c再答:cosA/2的平方=(b+c)/2c(1+cosA)/2=(b+c)/2ccosA=(b+c)/ccosA=b/c=(b^2+c
2sinAcosB=sin(A+B)+sin(A-B)=sinC+sin(A-B)=sinC所以sin(A-B)=0所以A=B所以,△ABC是等腰三角形.完毕.
在任意△ABC中,存在:a/sinA=b/sinB=c/sinC=2R,其中R是△ABC外接圆半径.所以a=2RsinA,b=2RsinB,c=2RsinC根据题意4RsinA=2RsinB+2Rsi
cos²(A/2)=(1/2)[cosA+1]=(sinB+sinC)/2sinC,即:sinC(cosA+1)=sinB+sinC=sin(A+C)+sinCsinCcosA+sinC=s
因为a^2=b(b+c),s(sinA)^2=(sinB)^2+sinBsin(A+B)所以(sinA+sinB)(sinA-sinB)=sinBsin(A+B)所以4sin[(A+B)/2]*cos