在三角形ABC中,cosA=五分之二倍根号五,tanB=1 3 求角C的大小
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:31:59
由(sinA+sinB)/sinC=(a+b)/c=cosA+cosB=(b^2+c^2-a^2)/2bc+(a^2+c^2-b^2)/2ac得:a^3+b^3+a^2b+ab^2-ac^2-bc^2
sinA+cosA=1/5(sinA+cosA)^2=1/25=1+2sinAcosA2sinAcosA=-24/25(sinA-cosA)^2=1-2sinAcosA=49/25sinA-cosA=
由cosA/cosB=a/b得:a/cosA=b/cosB,∵a/sinA=b/sinB相除得:tanA=tanB,∴A=B,三角形是等腰三角形.
(√3b-c)cosA=acosC(√3sinB-sinC)cosA=sinAcosC√3sinBcosA=sinAcosC+sinCcosA√3sinBcosA=sin(A+C)√3sinBcosA
正弦定理a/sinA=b/sinB=>a/b=sinA/sinBa*cosA=b*cosB=>a/b=cosB/cosA则cosB/cosA=sinA/sinB即sinAcosA-cosBsinB=0
(sinA)^2+(cosA)^2=1
C=180度-(A+B),cosC=cos[180^-(A+B)]=-cos(A+B)=-cosAcosB+sinAsinB2cosAcosB+cosC=12cosAcosB-cosAcosB+sin
(√3×b-c)cosA=acosC根据正弦定理(√3sinB-sinC)cosA=sinAcosC∴√3sinBcosA=sinAcosC+cosAsinC=sin(A+C)=sinB∵sinB>0
因为有:sinC=sin(A+B)所以原式可以化简为:2*sin[(A+B)/2]*cos[(A+B)/2]*2*cos[(A+B)/2]*cos[(A-B)/2]=2*sin[(A+B)/2]*co
因为三角形中所以cosA=3/5sinA=4/5cosB=5/13sinB=12/13cosC=cos(pi-(A+B))=-cos(A+B)=-(cosAcosB-sinAsinB)=-(15/65
解由sinC=(sinA+sinB)/(cosA+cosB)即sinA+sinB=sinCcosA+sinCcosB即sin(B+C)+sin(A+C)=sinCcosA+sinCcosB即sinBc
sinA+cosA=1/52sinAcosA=-24/25sinA-cosA=7/5cosA=-3/5是钝角三角形再问:为什么?再答:2sinAcosA=-24/25
(cosA+2cosC)/(cosA+2cosB)=sinB/sinCcosAsinC+2sinCcosC=cosAsinB+2sinBcosBcosAsinC+sin2C=cosAsinB+sin2
题目应该是这样子吧:证明:在锐角三角形ABC中,cosA90°,∴B>90°-A,A>90°-B,正弦函数在(0°,90°)上是增函数,所以sinB>sin(90°-A),sinA>sin(90°-B
用正弦定理换掉,sinAcosA+sinBcosB=SinCcosCsin2A+sin2B=sin2C和差化积,2sin(A+B)cos(A-B)=2sinCcosC即cos(A-B)=cosC=-c
∵cosB/cosA=a/b又:根据正弦定理:a/b=sinA/sinB∴cosB/cosA=sinA/sinB∴cosAsinA=cosBsinB∴2sinAcosA=2sinBcosB∴sin2A
a-b=c(cosB-cosA)a-b=c[(a^2+c^2-b^2)/2ac-(b^2+c^2-a^2)/2bc]a-b=(a^2+c^2-b^2)/2a-(b^2+c^2-a^2)/2b2(a-b
B+C=180-ACOS(180-A)=-COSA诱导公式
由sinA+cosA=1/2,(1)sin²A+cos²A=1(2)(1)两边平方:sin²A+2sinAcosA+cos²A=1/4,将(2)代入:sinAc
(sinA+cosA)^2=1+2sinAcosA=1/25所以sinAcosA=-12/25得:cosA