在三角形abc中,内角A,B,C所对的边分别是abc,已知4sin

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:54:12
在三角形abc中,内角A,B,C所对的边分别是abc,已知4sin
在三角形ABC中若a:b:c=3:5:7则这个三角形最大内角是多少?

a:b:c=3:5:7不妨假设a=3k,b=5k,c=7k根据余弦定理c^2=a^2+b^2-2abcosCcosC=-1/2C=120度三角形的最大内角的度数等于120

在三角形ABC中,已知角A:角B=1:2,a:b=1:√3,求三角形ABC的三个内角

从顶点C做垂线,可知b*sinA=a*sinB已知角A:角B=1:2所以B=2A代入上式有:b*sinA=a*sinB=a*(sin(2A))=a*2*sinAcosA,两边消去sinA有b=a*2*

在三角形abc中,三个内角满足角b减角a等于角c减角b则角b等于

角b减角a=角c减角b即2∠b=∠a+∠c∠b+∠a+∠c=180度∠b+2∠b=180度3∠b=180度∠b=60度

在三角形ABC中,三个内角A、B、C的对边分别为a,b,c,且A、B、C成等差数列,abc成比数

题目应为证等边三角形?证明:A、B、C成等差数列,即2B=A+C又A+B+C=180,故B=60又a、b、c成等比数列,即:b*2=ac根据余弦定理:b*2=a*2+c*2-2accosB故:ac=a

在三角形abc中,a,b,c分别是内角A,B,C对边,a=2,B=45度,面积S三角形abc=4

(1)由正弦定理S=1/2acsinB=4,a=2,B=45度,所以c=2√2,由余弦定理b^2=a^2+c^2-2·a·c·cosB,所以b=2;(2)由a=2,b=2,c=2√2,B=45度,三角

在三角形ABC中,(b+c):(c+a):(a+b)=4:5:6,则三角形ABC的最大内角为?度

(b+c)/4=(c+a)/5=(a+b)/6=k所以b+c=4kc+a=5ka+b=6k相加2(a+b+c)=15ka+b+c=7.5k所以a=3.5k,b=2.5k,c=1.5k所以A最大cosA

在三角形ABC中,三个内角a,b,c,三条边a,b,c满足 sin(A-B)/sin(A+B)=b+c/c

1、sin(A-B)/sinC=(b+c)/c=(sinB+sinC)/sinC,sin(A-B)=sinB+sinC即:sinAcosB-cosAsinB=sinB+sinCa×[a²+c

在三角形ABC中,三内角A,B,C成等差数列.

(1)∵△ABC中,A、B、C成等差数列∴A+C=2B,又A+B+C=180°∴B=60°由余弦定理知:b²=a²+c²-2accosB又b=7,a+c=13联立三式解得

三角形abc中内角a、b满足0

00tanb>0a,b为锐角tanatanb0tanc=tan(180-a-b)=tan(a+b)=(tana+tanb)/(1-tanatanb)>0所以c也是锐角锐角三角形

在三角形ABC sin(A-B)/sin(A+B)=(c-b)/c 则三角形中必含有 A.30°内角 B.45°内角 C

sin(A-B)/sin(A+B)=(c-b)/c正弦定理(c-b)/c=(sinC-sinB)/sinCsin(A+B)=sinC所以sin(A-B)=sinC-sinBsinAcosB-cosAs

高中解三角形(急) 在△ABC中,A,B,C为三个内角,a,b,c,为三条边

首先说明一下:∠C的范围是不是这样的:π/3<C

在三角形ABC中,已知内角A=60°,

2√3/sin60°=AC/sinxAC=(2√3/sin60°)sinx2√3/sin60°=AB/sin(180°-60°x)AB=(2√3/sin60°)sin(180°-60°-x)AB=(2

已知三角形ABC中,A,B,C为三角形的三个内角,且A

因为cos(A+180°-B)=-4/5所以cos(B-A)=4/5.而B、A显然都是锐角,所以sin(B-A)=3/5sinA=sin(B-(B-A))=sinBcos(B-A)-cosBsin(B

在三角形ABC中,内角A、B、C的对边分别是a、b、c,且bsin2A=asinB.

sin2A=asinB.2bsinAcosA=asinB2bacosA=abcosA=1/2A=60°a=2sinA=根号3/2因为S△=根号3=1/2bcsinA所以解得bc=4又有余弦公式得b^2

在三角形ABC中,三个内角A,B,C成等差数列,则∠B?

三角形ABC中,三个内角A,B,C成等差数列∴2B=A+C∵A+B+C=180°∴B=60°

在三角形ABC中三个内角A,B,C,成等差数列对应三边为abc且a=8b=7求三角形ABC的内切圆半径

2B=A+C,A+B+C=180A+B+C=2B+B=180B=60cosB=(a^2+c^2-b^2)/(2ac),a=8,b=7c=3或c=5,都合乎要求S△ABC=1/2ac*sinB=1/2(