在三角形ABC中,求证:c(a倍cosB-b倍cosA)=a平方 b平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:59:59
在三角形ABC中,求证:c(a倍cosB-b倍cosA)=a平方 b平方
在三角形ABC中,已知角A,B,C成等差数列,边a,b,c成等比数列,求证:三角形AB

因为A,B,C等差所以A+B+C=3B=180则B=60由a,b,c等比,可设a=b/q,c=bq其中q>0则有1/2=cosB=(a^2+c^2-b^2)/(2ac)代入化简可得q^2+1/q^2=

在三角形ABC中,已知sin^2A+sin^2B=sin^2C,求证:三角形ABC为直角三角形.

sin^2A+sin^2B=sin^2C利用三角形正弦定理sinA/a=sinB/b=sinC/c显然a^2+b^2=c^2所以边c所对的角C为直角.

在三角形ABC中 求证:(a^2-b^2)/c^2=(sin(A-B)/sinC

根据正弦及余弦定理可得sin(A-B)/sinC=(sinAcosB-cosAsinB)/sinC=(acosB-bcosA)/c=[(a²+c²-b²)/2c-(b&#

在三角形ABC中,求证sinA+sinB÷sinC=a+b÷c

正弦定理令1/x=a/sinA=b/sinB=c/sinC则sinA=axsinB=bxsinC=cx所以左边=(ac+bx)/cx=(a+b)/c=右边命题得证

在三角形ABC中,若B等于60度,2b等于a加c,求证三角形ABC为等边三角形

余弦定理b^2=a^2+c^2-2accosBb^2=a^2+c^2-ac,(a+c)^2/4=a^2+c^2-ac,a=c,等腰三角形,B等于60度,三角形ABC为等边三角形

在三角形ABC中,求证a/b-b/a=c(cosB/b-cosA/a

证明:由余弦定理cosB=(a^2+c^2-b^2)/2ac;cosA=(b^2+c^2-a^2)/2bc所以:c(cosB/b-cosA/a)=c{[(a^2+c^2-b^2)/2ac]/b-[(b

在三角形ABC中求证(a+b)cosc+(b+c)cosA+(c+a)cosB

a*cosC+b*cosC+b*cosA+c*cosA+c*cosB+a*cosB再分组得(a*cosC+c*cosA)+(b*cosC+c*cosB)+(b*cosA+a*cosB)=b+a+c

在三角形ABC中,求证 a^2(b+c-a)+b^2(c+a-b)+c^2(a+b-c)

解一:排序不等式设a≥b≥c可知a(b+c-a)≤b(c+a-b)≤c(a+b-c),排序不等式:倒序小于乱序a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤ba(b+c-a)+cb(c+

在三角形ABC中,若a平方=b(b c),求证A=2B

因为a^2=b(b+c),(sinA)^2=(sinB)^2+sinBsinC,(sinA)^2=(sinB)^2+sinBsin(A+B)所以(sinA+sinB)(sinA-sinB)=sinBs

在三角形ABC中,求证:c(acosB-bcosA)=a^2+b^2

求证:c(aconB-bconA)=a^2-b^2(原题右边=a^2+b^2恐有笔误)证:原等式左边=caconB-bcconAcaconB=(c^2+a^2-b^2)/2(根据余弦定理)bcconA

在三角形ABC中,求证:c=bcosA+acosB

其实这道题几何上解决起来很容易.画一个任意三角形ABC,每个角的对边标上字母a,b,c,在AB边上做一条高,c边其实由两部分组成,一部分是bcosA,另一部分是acosB,两部分结合起来即是c边长.说

在三角形ABC中,求证(sinA+sinB)/sinC=(a+b) /c

因为a/sinA=b/sinB=c/sinC=2R所以a=2R*sinA.b=2R*sinB.c=2R*sinC(a+b)/c=(2R*sinA+2R*sinB)/2R*sinC=(sinA+sinB

在三角形ABC中,a^2=b(b+c),求证A=2B

证明:因为a^2=b^2+c^2-2bccosA,又由题意知,a^2=b^2+bc所以c^2-2bccosA=bc则c=b(1+2cosA)所以由正弦定理c/sinC=b/sinB得sinB+2cos

在三角形ABC中,a-b=c(cosB-cosA),求证三角形的形状?

a-b=c(cosB-cosA)a-b=c[(a^2+c^2-b^2)/2ac-(b^2+c^2-a^2)/2bc]a-b=(a^2+c^2-b^2)/2a-(b^2+c^2-a^2)/2b2(a-b

在三角形ABC中,求证:c(acosB-bcosA)=a平方-b平方

把COSB和COSA用余弦定理换掉就好了

求证数学题,在三角形ABC中,求证sin^2(A)+sin^2(B)+sin^2(C)

sin^2A+sin^2B+sin^2C=(1-cosA)/2+(1-cosB)/2+(1-cos^2C)=2-cos(A+B)cos(A-B)-cos^2C=2+cosCsoc(A-B)-cos^2

在三角形ABC中,a^2+c^2=2b^2,第一,求证B=

(1)cosB=(a^2+c^2-b^2)/(2·a·c)=(a^2+c^2)/(4*a*c)>=1/2=cos60因为a^2+c^2=2b^2,所以,0

在三角形ABC中,sin方A+sin方B=sin方C,求证三角形ABC是直角三角形

由正弦定理a/sinA=b/sinB=c/sinC=2R,sin²A+sin²B=sin²C两边同乘以4R²得(2RsinA)²+(2RsinB)&#

在三角形ABC中,角A,B,C所对的边a,b,c成等比数列 1:求证 0

1.a,b,c成等比数列bb=ac正弦定理a/sinA=b/sinB=c/sinC2(sinB)^2=2sinAsinC=cos(A-C)-cos(A+C)=cos(A-C)+cosB

在三角形ABC中,若a2=b(b+c),求证:A=2B

因为a^2=b(b+c),s(sinA)^2=(sinB)^2+sinBsin(A+B)所以(sinA+sinB)(sinA-sinB)=sinBsin(A+B)所以4sin[(A+B)/2]*cos