在三角形ABC中,求证:c(a倍cosB-b倍cosA)=a平方 b平方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:59:59
因为A,B,C等差所以A+B+C=3B=180则B=60由a,b,c等比,可设a=b/q,c=bq其中q>0则有1/2=cosB=(a^2+c^2-b^2)/(2ac)代入化简可得q^2+1/q^2=
sin^2A+sin^2B=sin^2C利用三角形正弦定理sinA/a=sinB/b=sinC/c显然a^2+b^2=c^2所以边c所对的角C为直角.
根据正弦及余弦定理可得sin(A-B)/sinC=(sinAcosB-cosAsinB)/sinC=(acosB-bcosA)/c=[(a²+c²-b²)/2c-(b
正弦定理令1/x=a/sinA=b/sinB=c/sinC则sinA=axsinB=bxsinC=cx所以左边=(ac+bx)/cx=(a+b)/c=右边命题得证
余弦定理b^2=a^2+c^2-2accosBb^2=a^2+c^2-ac,(a+c)^2/4=a^2+c^2-ac,a=c,等腰三角形,B等于60度,三角形ABC为等边三角形
证明:由余弦定理cosB=(a^2+c^2-b^2)/2ac;cosA=(b^2+c^2-a^2)/2bc所以:c(cosB/b-cosA/a)=c{[(a^2+c^2-b^2)/2ac]/b-[(b
a*cosC+b*cosC+b*cosA+c*cosA+c*cosB+a*cosB再分组得(a*cosC+c*cosA)+(b*cosC+c*cosB)+(b*cosA+a*cosB)=b+a+c
解一:排序不等式设a≥b≥c可知a(b+c-a)≤b(c+a-b)≤c(a+b-c),排序不等式:倒序小于乱序a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤ba(b+c-a)+cb(c+
因为a^2=b(b+c),(sinA)^2=(sinB)^2+sinBsinC,(sinA)^2=(sinB)^2+sinBsin(A+B)所以(sinA+sinB)(sinA-sinB)=sinBs
求证:c(aconB-bconA)=a^2-b^2(原题右边=a^2+b^2恐有笔误)证:原等式左边=caconB-bcconAcaconB=(c^2+a^2-b^2)/2(根据余弦定理)bcconA
其实这道题几何上解决起来很容易.画一个任意三角形ABC,每个角的对边标上字母a,b,c,在AB边上做一条高,c边其实由两部分组成,一部分是bcosA,另一部分是acosB,两部分结合起来即是c边长.说
因为a/sinA=b/sinB=c/sinC=2R所以a=2R*sinA.b=2R*sinB.c=2R*sinC(a+b)/c=(2R*sinA+2R*sinB)/2R*sinC=(sinA+sinB
证明:因为a^2=b^2+c^2-2bccosA,又由题意知,a^2=b^2+bc所以c^2-2bccosA=bc则c=b(1+2cosA)所以由正弦定理c/sinC=b/sinB得sinB+2cos
a-b=c(cosB-cosA)a-b=c[(a^2+c^2-b^2)/2ac-(b^2+c^2-a^2)/2bc]a-b=(a^2+c^2-b^2)/2a-(b^2+c^2-a^2)/2b2(a-b
把COSB和COSA用余弦定理换掉就好了
sin^2A+sin^2B+sin^2C=(1-cosA)/2+(1-cosB)/2+(1-cos^2C)=2-cos(A+B)cos(A-B)-cos^2C=2+cosCsoc(A-B)-cos^2
(1)cosB=(a^2+c^2-b^2)/(2·a·c)=(a^2+c^2)/(4*a*c)>=1/2=cos60因为a^2+c^2=2b^2,所以,0
由正弦定理a/sinA=b/sinB=c/sinC=2R,sin²A+sin²B=sin²C两边同乘以4R²得(2RsinA)²+(2RsinB)
1.a,b,c成等比数列bb=ac正弦定理a/sinA=b/sinB=c/sinC2(sinB)^2=2sinAsinC=cos(A-C)-cos(A+C)=cos(A-C)+cosB
因为a^2=b(b+c),s(sinA)^2=(sinB)^2+sinBsin(A+B)所以(sinA+sinB)(sinA-sinB)=sinBsin(A+B)所以4sin[(A+B)/2]*cos