在三角形ABC中,若8*sin^22分之B C-

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:12:17
在三角形ABC中,若8*sin^22分之B C-
在三角形ABC中,已知sin^2A+sin^2B=sin^2C,求证:三角形ABC为直角三角形.

sin^2A+sin^2B=sin^2C利用三角形正弦定理sinA/a=sinB/b=sinC/c显然a^2+b^2=c^2所以边c所对的角C为直角.

在三角形ABC中sin^A+sin^B=2sin^C,则角C为?

sin²A+sin²B=2sin²C由正弦定理a^2+b^2=2c^2代入余弦定理:cosC=(a^2+b^2-c^2)/(2ab)=c^2/(2ab)>0所以:cosC

在三角形ABC中,sin^A-sin^B+sin^C=sinAsinC,试求角B的大小

用正弦定理化作a^2-b^2+c^2=ac整理得到cosB=a^2-b^2+c^2/2ac=1/2B=π/3

在三角形ABC中,若sin^2A =sin^2B+sin^2C,则三角形ABC为————三角形

sinA/a=sinB/b=sinC/c=rsin^2A=sin^2B+sin^2C得出a^2*r^2=(b^2+c^2)*r^2即a^2=b^2+c^2所以ABC是直角三角形

在△ABC中,若sin(A+B)sin(A-B)=sin²C,则此三角形形状是

∵在△ABC中,sin(A+B)=sinC∴sinC·sin(A-B)=sin²Csin(A-B)=sinC又∵sinC=sin(A+B)∴sin(A-B)=sin(A+B)sinAcosB

在三角形ABC中,若sin^2A=sin^2B+sin^2C,则三角形ABC的形状

由正弦定理和已知可以得到:a^2=b^2+c^2.所以三角形为直角三角形.

在三角形ABC中,sin方A+sin方B=sin方C、C=

sin方A+sin方B=sin方C根据正弦定理:a/sinA=b/sinB=c/sinC=2Ra^2/(2R)^2+b^2/(2R)^2=c^2/(2R)^2即:a^2+b^2=c^2,符合勾股定理,

在三角形ABC中,sin*2A+sin*2B=sin*2C

sin^2A+sin^2B=sin^2C=sin^2(A+B)=(sinAcosB+sinBcosA)^2=sin^2Acos^2B+sin^2Bcos^2A+2sinAcosAsinBcosB左边减

在三角形ABC中,sin^2A

a²≤b²+c²-bcbc≤b²+c²-a²1/2≤(b²+c²-a²)/2bccosa≥1/2a≤60°

在三角形ABC 中,若sin A:sin B:sin C=3:2:4,则cos C的值

根据正弦定理:a/sinA=b/sinB=c/sinC=2R,R为该三角形外接圆半径,则:a/2R=sinAb/2R=sinBc/2R=sinC因此:sinA:sinB:sinC=a:b:c=3:2:

在三角形ABC中,若sinA=2sinBsinC,且sin^2*A=sin^2*B+sin^2*C,则三角形ABC是

sin^2A=sin^2B+sin^2C,sinA=2sinBsinC所以sin^2A-sinA=sin^2B+sin^2C-sinA=sin^2B+sin^2C-2sinBsinC即sinA(sin

在三角形ABC中,有sin^A+sin^B=1,求证:三角形为直角三角形

sin^A+sin^B=1sin^A=1-sin^B=con^Bsin^A-cos^B=(sinA+cosB)(sinA-cosB)=0所以sinA=cosB=sin(90-B)或者sinA=-cos

在三角形ABC中,若sin(A/2)=cos((A+B)/2)则三角形ABC一定为何种三角形?

sin(A/2)=cos((A+B)/2),得sin(A/2)=cos(90度-(C/2))=sin(C/2)就有A/2=C/2或A/2=180度-C/2,故A=C(A+C=360度舍去),因此三角形

;写明过程; 【1】在三角形abc 中,若sin方a+sin方b+sin方c小于2,则三角形abc必定是?

【1】sin方a+sin方b+sin方c=sin方a+sin方b+sin方(180-(a+b))=sin方a+sin方b+sin方(a+b)=sin方a+sin方b+(sina*cosb+cosa*s

在三角形ABC中,若SIN方C=SIN方A+sin方B,则三角形ABC为( )三角形

选A.因为在三角形ABC中,若sinC=sinA+sinB,又因为sinC=sin(180°-A-B)=sin(A+B)=(sinAcosB+sinBcosA)=sinAcosB+2sinAcosAs

求证数学题,在三角形ABC中,求证sin^2(A)+sin^2(B)+sin^2(C)

sin^2A+sin^2B+sin^2C=(1-cosA)/2+(1-cosB)/2+(1-cos^2C)=2-cos(A+B)cos(A-B)-cos^2C=2+cosCsoc(A-B)-cos^2

在三角形ABC中,sin方A+sin方B=sin方C,求证三角形ABC是直角三角形

由正弦定理a/sinA=b/sinB=c/sinC=2R,sin²A+sin²B=sin²C两边同乘以4R²得(2RsinA)²+(2RsinB)&#