在三角形abc中AB=根号2,角B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:32:15
此题用余弦定理即:cosB=(AB^2BC^2-AC^2)/2AB×BC(人教高中数学,忘了是必修4还是必修5)算得cosB=(4根号3)/3根号2根号6.面积用两边极其夹角的正弦值之积的一半:S=1
根据题目:有cos∠ABC=AB²+BC²-AC²/2AB.BC=cos45°AB=2,AC=根号8,BC>0,舍负值,BC=根号6+根号2,三角形面积=1/2AB.BC
/>设BC=xAC=√2x根据余弦定理可得cosC=(x^2+2x^2-4)/(2√2x^2)=(3x^2-4)/(2√2x^2)sinC=√1-[(3x^2-4)^2/(2√2x^2)^2]=√(-
因为根号3sinA+cosA=1所以(根号3)/2*sinA+1/2*cosA=1/2左边根据公式可化为sin(A+30度)=1/2因为A是三角形内角,所以30
利用余弦定理a^2=b^2+c^2-2bccosB=(2^1/2)^2+1^2-2*2^(1/2)*2^(1/2)/2=1所以a=1所以ABC为等腰直角三角形,S(ABC)=1/2*1*1=1/2
∵AB=根号2,AC=根号2,BC=2∴AB²+AC²=2+2=4=BC²∴三角形ABC是等腰直角三角形∴∠B=45°
/>为方便起见,设c=AB,b=AC,a=BC∵AB=2根号5,AC=3,∴c=2√5,b=3∵sinC=2sinA利用正弦定理a/sinA=b/sinB=c/sinC∴c=2a∴a=√5∴cosA=
由正弦定理:AC/sinB=AB/sinC即:sinC=ABsinB/AC=2√3sin30°/2=√3/2可知:C=60°或C=120°当C=60°时,A=90°,则S△ABC=AB*AC/2=2√
作AD垂直BC,因为角ABC为45度,所以,BD=AD=根号2,再根据勾股定理,算出CD=根号6,根据面积公式,S=二分之一乘根号2乘【根号2+根号6】=1+根号3
先画下来三角形ABC,然后过A点作BC上的高AD,AD就是三角形的高了,为了找出三角形的面积,我们需要什么?就是底边和高了!那找出底边BC和高AD,它们的乘积就是△面积了!看图,因为B=45°,sin
由周长公式得:①a+b=√6,由勾股定理得:②a²+b²=4,∴①²-②得:2ab=2,∴½ab=½,∴△ABC面积=½ab=½.
余弦定理得cosA=(3方+2方-根号10的平方)/(2*3*2)=0.25向量AB*向量AC=向量AB的模*向量AC的模*cosA=3*2*0.25=1.5
做AD垂直BC于D根据勾股定理得到AD=根号10S三角形ABC=2根号2*根号下10*1/2=根号20=2*根号5
第一题以c为顶点向ab边作垂线,垂足为d,设ad为x,所以dc为x,db为根号6减x,然后用勾股定理就可以求x,进而求ac边第二题跟上面那题一样,以c为顶点做垂线,垂足为d,则ad为2x,dc为x,然
c=AB=2,a=BC,b=AC,b=根号2*a由余弦定理得a²+b²-2abcosC=c²=4即a²+2a²-2根号2*cosCa²=4,
由正弦定理:AB/sinC=2(√6+√2)=AC/sinB=BC/sinAAC=2(√6+√2)sinBBC=2(√6+√2)sinAAC+BC=2(√6+√2)(sinA+sinB)=2(√6+√
由余弦定理得:cosA=(AC^2+AB^2-AB^2)/(2*AC*AB)=(40+40-32)/(2*40)=3/5所以sinA=4/5三角形ABC的面积三角形ABC的面积s=(1/2)*AB*A
(1)cosA=(AB^2+AC^2-BC^)/2AB*AC=√2/2向量AB*向量AC=|AB||AC|cosA=√3+1
在AD的延长线上取点E,使AD=ED,连接BE∵AD是BC边上的中线∴BD=CD∵AD=ED,∠ADC=∠BDE∴△ADC≌△EDB(SAS)∴BE=AC=√26∵AE=AD+ED=2AD=2√6,A