在三角形abc中已知角abc等于60度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:50:43
在三角形abc中已知角abc等于60度
在三角形ABC中,已知

A=45`a/sinA=c/sinCc=6*根号2

已知三角形ABC中,

这道题没有错,因为题中没有说是等边三角形,本题考察的知识点较多,环环相扣,解题过程如下:(1)延长AO交圆于E,则直径AO所对的

在三角形ABC中,已知叫C=60度,AC>BC,有三角形ABC'、三角形BCA'、三角形CAB'都是三角形ABC形外的等

1、DC=BC,角BCD=60度,所以三角形BCD为等边三角形三角形C'BD与三角形ABC中BD=BC,BC'=BA,角C'BD=角ABC,三角形C'BD与三角形ABC

已知,如图,在RT三角形ABC中,角ABC=90,

题目中AO=x,应改为AP=x设OB=OE=OD=R在RT三角形AOD中,AO^2=OD^2+AD^2(1+R)^2=R^2+4R=3/2AO=1+R=5/2AB=AO+BO=4如AP=AD,则x=A

如图,已知在三角形ABC中,O为角ABC,角ACB平分线的交点

OED周长=10因为OE=BEOF=FC又因为BE+EF+FC=BC=10所以OE+EF+FC=BC=10(这道题是利用角平分线使被平分的两个角相等然后平行使角ABO与另一个角BOE相等又因为角ABO

如图所示,已知在三角形ABC中,AB

AC=AE+CE=8,因为DE垂直平分BC,所以BE=CE所以AE+BE=8ABE周长为AE+BE+AB=14AB=6

在三角形abc中,已知bd、ce是三角形abc的高,试说明:三角形ade相似三角形abc

由垂直可以得到:角1+角A=角2+角A,得到角1=角2,得到三角形ABD相似三角形ACD,得到AD:AE=AB:AC,本身有角A=角A,由定理:两组对应边成比例,并且夹角相等,可得到:三角形ADE相似

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

已知:如图,在三角形ABC中,

用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度

已知三角形ABC中.

如图,∠DBC=(180°-x°)/2=90°-x°/2. ∠DBA=90°+x°/2.同理.∠DCA=90°+y°/2.  x+y+50=180.  

已知,在三角形ABC中,AD平分

由EF垂直平分AD得fa=fd所以,∠fad=∠fda.∠fda=∠bad+∠abd[外角定理]AD平分∠BAC得∠bad=∠dac所以∠bad+∠abd=∠dac+∠cad所以

已知三角形ABC中

因为AB,AC的垂直那个平分线分别交BC与点E,F所以AE=BE,AF=CF(线段垂直平分线上的点到线段的两个端点的距离相等)又因为角BAC=140所以角B加角C等于40所以角BAE加上角CAF等于4

在三角形ABC中,

已知,AD=AC,BE=BC,可得:∠ADC=∠ACD,∠BEC=∠BCE,即有:∠EDC=∠ACD=∠ACE+∠ECD,∠DEC=∠BCE=∠BCD+∠ECD,∠ECD=180°-(∠EDC+∠DE

三角形ABC中,已知

tanA+tanB+√3(根号3)=√3tanA*tanB把√3(根号3)移到右边去,提出-√3(根号3)得到tanA+tanB=-√3(根号3)(1-tanA*tanB)把(1-tanA*tanB)

在三角形ABC中,已知下列条件,解三角形

(1)A=70C=30c=20cmB=180-70-30=80度a/sinA=b/sinB=c/sinCa=csinA/sinC=37.59cmb=csinB/sinC=39.39cm(2)A=34B

在三角形ABC中,已知下列条件,解三角形.

(1)由正弦定理15/sin23度=26/sinB可求出B由余弦定理cosC=(a²+b²-c²)/2ab可求a再由正弦定理a/sinA=15/sin23度求出A2)同第

在三角形ABC中

解题思路:根据题意,由正弦定理和余弦定理可求解题过程:见附件最终答案:略

已知在三角形ABC中 判断三角形是锐角三角形还是顿角三角形

(sinA+cosA)^2=1+sin2A=49/169sin2A=120/169sin2A=2*sinA*cosA=120/169sinA*cosA=60/169sinA*√(1-sinA^2)=6

在三角形ABC中,角ABC对应边abc,已知cos(C/2)=√5/3 ,若acosB+bcosA=2,求三角形ABC面

已知cos(C/2)=√5/3cosC=2[cos(C/2)]²-1=2*5/9-1=1/9sinC=√(1-cos²C)=4√5/9由余弦定理acosB+bcosA=a*(a&#