在三角形abc中角acb90度以ac为边在三角形abc外作等腰三角形acd

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:10:25
在三角形abc中角acb90度以ac为边在三角形abc外作等腰三角形acd
在三角形ABC中,已知

A=45`a/sinA=c/sinCc=6*根号2

在Rt三角形ABC中,角B=90度

在三角形BCD中sin15/sin45=10/BC,可以算出BC在三角形ABC中tan30=BC/AB,可以求出AB

在三角形ABC中AB等于2,AC等于根号8角ABC等于45度球三角形ABC面积

根据题目:有cos∠ABC=AB²+BC²-AC²/2AB.BC=cos45°AB=2,AC=根号8,BC>0,舍负值,BC=根号6+根号2,三角形面积=1/2AB.BC

在三角形ABC中,角A

(1)过P作PH⊥BC于H,则PH∥AC;Rt△ABC中,AC=6,BC=8;则AB=10.∵P为AB上动点可与A、B重合(与A重合BP为0,与B重合BP为10)但是x不能等于5.∵当x=5时,P为A

在三角形ABC中,AB=1,AC=根号2,角ABC=45度,求三角形ABC面积

利用余弦定理a^2=b^2+c^2-2bccosB=(2^1/2)^2+1^2-2*2^(1/2)*2^(1/2)/2=1所以a=1所以ABC为等腰直角三角形,S(ABC)=1/2*1*1=1/2

在三角形ABC中,(角B

如图:在图1中:在三角形DEF中,∠DEF=90-∠FDE,在三角形BDA中,∠FDE=180-∠B-∠BAD=180-∠B-1/2∠A,在三角形ABC中,∠A=180-∠B-∠C,所以,∠FDE=1

在直三棱柱ABC-A1B1C1中,底面ABC为直角三角形且角ACB90度 AC=6 BC=CC1=根号2 P是BC1上动

这需要展开图来进行解答,好险我做过,否则折磨死将ΔCBC1,ΔA1BC1展开在一平面,连接A1C则A1C就是所求最小,在ΔA1C1C中,证得角A1C1B=90,角CC1B=45,∴角A1C1C=135

在三角形ABC中,角ACB等于60度,AC大于BC.又三角形ABC',三角形BCA',三角形CAB'都是三角形ABC形外

1、DC=BC,角BCD=60度,所以三角形BCD为等边三角形三角形C'BD与三角形ABC中BD=BC,BC'=BA,角C'BD=角ABC,三角形C'BD与三角形ABC全等三角形ABC和三角形B'DC

如图所示 在三角形abc中,

解题思路:根据直角三角形的知识可求解题过程:最终答案:略

数学题在三角形ABc中

线段BD、CE、DE之间存在的数量关系为DE=BD+CE,理由为:由BF、CF分别为角平分线,利用角平分线定义得到两对角相等,再由DE与BC平行,得到两对内错角相等,等量代换及等角对等边得到BD=DF

泰安市中考题(在三角形ABC中,角ABC=45度……)

垂足分别为D,E,FDF是垂线吗条件里没有请看看拉条件没

在rt三角形abc中 角c等于90度

AC/BC=BC/DC所以△ABC∽△BDC

在Rt三角形ABC中,角ABC等于90读

题目都没有再答:题目都没有再答:题目都没有

在RT三角形ABC中

已知,CM是Rt△ABC斜边上的中线,(题中应该是∠A小于∠B)可得:CM=AM,所以,∠ACM=∠BAC.∠BCD=90°-∠B=∠BAC=∠ACM=∠DCM.因为,∠BCD+∠ACM+∠DCM=9

在三角形ABC中,AB=4,AC=3,角ABC-45度,求三角形ABC的面积

cos∠ABC=√2/2=(a²+c²-b²)/(2ac)=(a²+16-9)/(8a);4√2a=a²+7;a²-4√2a+7=0;Δ=3

在三角形ABC中,

已知,AD=AC,BE=BC,可得:∠ADC=∠ACD,∠BEC=∠BCE,即有:∠EDC=∠ACD=∠ACE+∠ECD,∠DEC=∠BCE=∠BCD+∠ECD,∠ECD=180°-(∠EDC+∠DE

如图 在Rt三角形ABC中 角ACB90°C垂直AB 垂足为D 若AD=1 BD=4 求CD的长 并

Rt△ACB中,∠ACB=90°,CD⊥AB;∴∠ACD=∠B=90°-∠A;又∵∠ADC=∠CDB=90°,∴△ACD∽△CBD;∴CD2=AD•BD=4,即CD=2.——很高兴为你解答

如图 三角形ABC中 角ACB90度 角BAC30度 三角形abe和acd都是等边三角形

刚才那个题已经解答了,请给一个好评好吗再答:这个问题请稍等再答:证明:连AF,FC∵△ABE是等边三角形,BF=EF∴AF是∠BAE的平分线,∴∠BAF=∠BAE=60/2=30°∵∠BAC=30°∴

在三角形ABC中

解题思路:根据题意,由正弦定理和余弦定理可求解题过程:见附件最终答案:略