在三角形ABC的外接圆中,D是弧BC的中点,若AE=6,DE=2,求ID的长
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:53:49
(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA
连接od交bc于点E,应为D是弧BC的中点所以od垂直bc,所以角deb等于90,应为ab是直径所以角acb为90,所以bc为4根号2,od垂直bc所以be等于2根号2,三角形obe相似三角形abco
第一个问题:∵A、B、E、C共圆,∴∠BAE=∠ECD.∵I是△ABC的内心,∴∠BAE=∠EAC,∴∠ECD=∠EAC.∵I是△ABC的内心,∴∠ACI=∠DCI.由三角形外角定理,有:∠EIC=∠
可以补充下下么由题可知A,B,C,D共圆,显然AE交BC于D,由相交弦定理来做.
连接BI∵I是△ABC的内心∴∠BAI=∠CAI,∠ABI=∠CBI.弧BE=弧CE∴∠BAE=∠EBC∵∠BIE=∠BAI+∠ABI∠IBE=∠IBC+∠EBC∴∠EBI=∠EIB∴EB=EI
过点O作BC的垂线,垂足为D,连接OB根据垂径定理,BD=1/2BC=12因为OD=5根据勾股定理,OB=13所以外接圆的半径为13
(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA
角BAD=角C/2角BAD+114=2角C角BAD=38
在RT三角形ABC中,角C=90度,AC=3.BC=4则AB=√(AC^2+BC^2)=5AB为三角形ABC的外接圆的直径径所以半径r=AB/2=5/2
因为E是内心,所以EA、EB分别为∠A和∠B的角平分线,即∠BAD=∠DAC=∠A/2,∠ABE=∠EBC=∠B/2所以BD=CD因为∠DAC和∠DBC对应同一段外接圆弧CD,所以∠DBC=∠DAC=
1.首先证明角EDC=角ABC=角ABC=>DE=EC等腰三角形2.画一条经过D平行于BC的直线,交AB于F,连接FC角DBC=角FDB,角FBD=角DBC,顺便推导出角DFC=角DCF,说明DFC是
(1)∠BDA=∠BCA=60°(同弧圆周角)因为,∠BAC与∠ABC的角平分线AE,BE相交于点E所以,∠BAE+∠ABE=∠EBC+∠EAC=60°所以,∠BED=∠BAE+∠ABE=60°所以,
a/sinA=5b/sinB=4所以sinA=3/5,cosA=4/5sinB=4/5cosA=sinB=cos(90°-B)A=90°-BA+B=90°C=90°S=ab/2=6
证明:知道I就是圆心(由三角形外心的定义),则△ABE和△ACB是Rt△,AB⊥BEAC⊥CE而AE是角BAC平分线所以BE=EC,直角三角形ABE,I为AE中点,有AI=BI=EI所以可证得BE=E
DFC,DCK相似,得出结论
连接BE,∠B=∠AEC,∠C=∠AEB,∠B=∠C,∴△ABD∽△AEB即可得出第二问
你能求出第一问,说明你已经发现AE其实是△ABC外接圆的直径,设外接圆圆心为QQE=r=1.5,DE=0.6∴QD=0.9∵O是外心,而AB=AC∴AO是△ABC的高和中线∴AE⊥BC,BD=CD有勾
当三角形ABC是等边三角形时,面积最大,为12√3再问:怎么证明啊具体步骤?再答:你是高中生吧?再问:恩再答:设圆心为O。连OA,OB,OC,则角BOC=120度,用S=1/2absinC计算。再问:
根据勾股定AC=3AC*CB=AB*CD(过C作CD垂直于AB,根据三角型面积,底*高除以2,因为两边分别除以二,所以AC*CB=AB*CD)CD=12/5为半径根据面积=πr方面积等于144/25π
(1)证明:连接CE因为CD=CE=CB所以角CDE=角CED角CEB=角CBE因为角ACB=90度角ACB+角CDE+角CED+角CEB+角CBE=360度所以角CDE+角CBE=135度角CED+