在三角形中,a2-C2 b2=ab,则角c的大小为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 20:49:18
在三角形中,a2-C2 b2=ab,则角c的大小为
在三角形ABC中 a2=b2+c2+bc,则A等于——— 度

将a^2移过去得b^2+c^2-a^2=-bc同除以2bc得(b^2+c^2-a^2)/2bc=-1/2且(b^2+c^2-a^2)/2bc=cosA则A=120°

三角形ABC中,a2+b2=c2+ab,a/b=cosB/cosA,求三角形面积

正弦定理a/sinA=b/sinBa/b=sinA/sinB则sinA/sinB=cosB/cosA2sinAcosA=2sinBcosBsin2A=sin2B2A=2B或2A+2B=180A=B或A

在三角形ABC中,a2=b2+c2+bc,则角A等于?

a2=b2+c2+bcb2+c2-a2=-bc(b2+c2-a2)/bc=-1cosA=(b2+c2-a2)/2bc=-1/2A=2π/3

在三角形ABC中,a2+b2+ab=c2,求角A

由已知式可得cosC=-1/2,进而得C=120º,A+B=60º,如果没有别的条件,则不可能确定A和B的大小!

在三角形ABC中,若b2+c2+bc-a2=0,则三角形形状为

^2+c^2-a^2+bc=0b^2+c^2-a^2=-bccosA=(b^2+c^2-a^2)/2bc=-bc/2bc=-1/2A=120度三角形为钝角三角形

在三角形ABC中,a2=b(b+c)是A=2B的什么条件?(

此题为正弦定理的综合应用,要点是角化边或边化角具体证明过程如下:1.充分性因为A=2B所以sinC=sin(A+B)=sin3B所以(sinB+sinC)/sinA=[1-(sinB)^2+3(cos

三角形ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),试判断三角形形状

(a^2+b^2)sin(A-B)=(a^2-b^2)sin(A+B),(sin^A+sin^B)sin(A-B)=(sin^A-sin^B)sin(A+B)sin^A*(sin(A+B)-sin(A

解斜三角形数学题1.在三角形ABC中,Sabc=(a2+b2+c2)/4,则C=?---a2,b2,c2为a的平方,b的

1.估计题目是(a2+b2-c2)/4=S=ab/2*SINC得(a2+b2-c2)/2ab=sinC=COSC即C=452.设a=7x,b=5x,c=3x,则cosA=b2+c2-a2/2ab=-1

【高中数学】在三角型ABC中,已知(a2+b2)sin(A-B)=(a2-b2)sin(A-B)证三角形ABC是等腰三角

证明:(a²+b²)(sinAcosB-cosAsinB)=(a²-b²)(sinAcosB+cosAsinB)a²sinAcosB-a²c

若在三角形ABC中,已知a2=b2+c2+bc,则角A为(  )

∵在△ABC中,a2=b2+c2+bc,即b2+c2-a2=-bc,∴cosA=b2+c2−a22bc=−bc2bc=-12,则A=120°.故选:B.

在三角形abc中,有(a2+ b2)sin(a-b)=(a2-b2)sinc 2是平方,问这是什么三角形,

(a^2+b^2)sin(A-B)=(a^2-b^2)sinC,(sin^A+sin^B)sin(A-B)=(sin^A-sin^B)sin(A+B)sin^A*(sin(A+B)-sin(A-B))

在三角形ABC中,若a2+b2=c2,证明三角形ABC是直角三角形

当三角形为直角三角形时由面积法c^2=4*a*b/2+(b-a)^2=a^2+b^2即:在直角三角形中有c^2=a^2+b^2现在要反过来看是否成立,即:c^2=a^2+b^2要推出:直角三角形?c^

在三角形ABC中,若a2+b2=c2,证明三角形ABC是直角三角形,

cosC=(a2+b2-c2)/2absinC由题意得a2+b2-c2=0即cosC=0又因为在三角形中所以0

在三角形ABC中,若a2-b2=-bc+c2.则角A等于

cosA=(b^2+c^2-a^)/2bc=bc/2bc=1/2A=60

求证:在三角形abc中,cos2A/a2-cos2B/b2=1/a2-1/b2

在三角形abc中,cos2A/a²-cos2B/b²=(1-2sin²A)/a²-(1-2sin²B)/b²=[1/a²-1/(2

在三角形ABC中,求证(cos2A/a2)-(cos2B/b2)=(1/a2)-(1/b2)

在三角形abc中,cos2A/a-cos2B/b=(1-2sinA)/a-(1-2sinB)/b=[1/a-1/(2R)]-[1/b-1/(2R)]=1/a-1/

在三角形ABC中,a,b,c成等比数列,且a2-c2=ac-bc,判定三角形ABC形状.

等边三角形证明:因为等比,所以b^2=ac.1所以a^2=b^2+c^2-bc而由余弦定理a^2=b^2+c^2-2cosAbc,所以cosA=1/2锐角三角形,A=60度正弦定理a/sin60度=b

3 在三角形ABC中,已知(a2+b2)sin(A-B)=(a2-b2)sin(A+B) 求证:ABC是等腰或直角三角形

他这是合并同类项(sin^A+sin^B)sin(A-B)=(sin^A-sin^B)sin(A+B)sin^Asin(A-B)+sin^Bsin(A-B)=sin^Asin(A+B)-sin^Bsi

在三角形ABC中,a,b,c分别代表三个内角A,B,C的对边,如果(a2+b2)sin(A-B)=(a2-b2)sin(

证明:原式化为a2[sin(A-B)-sin(A+B)=-b2[sin(A-B)+sin(A+B)],即a2[sin(A+B)-sin(A-B)=b2[sin(A-B)+sin(A+B)],故2a2c

在三角形ABC中,若a2=b(b+c),求证:A=2B

因为a^2=b(b+c),s(sinA)^2=(sinB)^2+sinBsin(A+B)所以(sinA+sinB)(sinA-sinB)=sinBsin(A+B)所以4sin[(A+B)/2]*cos