在三角形中,a2-C2 b2=ab,则角c的大小为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 20:49:18
将a^2移过去得b^2+c^2-a^2=-bc同除以2bc得(b^2+c^2-a^2)/2bc=-1/2且(b^2+c^2-a^2)/2bc=cosA则A=120°
正弦定理a/sinA=b/sinBa/b=sinA/sinB则sinA/sinB=cosB/cosA2sinAcosA=2sinBcosBsin2A=sin2B2A=2B或2A+2B=180A=B或A
a2=b2+c2+bcb2+c2-a2=-bc(b2+c2-a2)/bc=-1cosA=(b2+c2-a2)/2bc=-1/2A=2π/3
由已知式可得cosC=-1/2,进而得C=120º,A+B=60º,如果没有别的条件,则不可能确定A和B的大小!
^2+c^2-a^2+bc=0b^2+c^2-a^2=-bccosA=(b^2+c^2-a^2)/2bc=-bc/2bc=-1/2A=120度三角形为钝角三角形
此题为正弦定理的综合应用,要点是角化边或边化角具体证明过程如下:1.充分性因为A=2B所以sinC=sin(A+B)=sin3B所以(sinB+sinC)/sinA=[1-(sinB)^2+3(cos
(a^2+b^2)sin(A-B)=(a^2-b^2)sin(A+B),(sin^A+sin^B)sin(A-B)=(sin^A-sin^B)sin(A+B)sin^A*(sin(A+B)-sin(A
1.估计题目是(a2+b2-c2)/4=S=ab/2*SINC得(a2+b2-c2)/2ab=sinC=COSC即C=452.设a=7x,b=5x,c=3x,则cosA=b2+c2-a2/2ab=-1
证明:(a²+b²)(sinAcosB-cosAsinB)=(a²-b²)(sinAcosB+cosAsinB)a²sinAcosB-a²c
∵在△ABC中,a2=b2+c2+bc,即b2+c2-a2=-bc,∴cosA=b2+c2−a22bc=−bc2bc=-12,则A=120°.故选:B.
(a^2+b^2)sin(A-B)=(a^2-b^2)sinC,(sin^A+sin^B)sin(A-B)=(sin^A-sin^B)sin(A+B)sin^A*(sin(A+B)-sin(A-B))
当三角形为直角三角形时由面积法c^2=4*a*b/2+(b-a)^2=a^2+b^2即:在直角三角形中有c^2=a^2+b^2现在要反过来看是否成立,即:c^2=a^2+b^2要推出:直角三角形?c^
cosC=(a2+b2-c2)/2absinC由题意得a2+b2-c2=0即cosC=0又因为在三角形中所以0
cosA=(b^2+c^2-a^)/2bc=bc/2bc=1/2A=60
在三角形abc中,cos2A/a²-cos2B/b²=(1-2sin²A)/a²-(1-2sin²B)/b²=[1/a²-1/(2
在三角形abc中,cos2A/a-cos2B/b=(1-2sinA)/a-(1-2sinB)/b=[1/a-1/(2R)]-[1/b-1/(2R)]=1/a-1/
等边三角形证明:因为等比,所以b^2=ac.1所以a^2=b^2+c^2-bc而由余弦定理a^2=b^2+c^2-2cosAbc,所以cosA=1/2锐角三角形,A=60度正弦定理a/sin60度=b
他这是合并同类项(sin^A+sin^B)sin(A-B)=(sin^A-sin^B)sin(A+B)sin^Asin(A-B)+sin^Bsin(A-B)=sin^Asin(A+B)-sin^Bsi
证明:原式化为a2[sin(A-B)-sin(A+B)=-b2[sin(A-B)+sin(A+B)],即a2[sin(A+B)-sin(A-B)=b2[sin(A-B)+sin(A+B)],故2a2c
因为a^2=b(b+c),s(sinA)^2=(sinB)^2+sinBsin(A+B)所以(sinA+sinB)(sinA-sinB)=sinBsin(A+B)所以4sin[(A+B)/2]*cos