在下图中,D.E.F分别是BC.AC.DC的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:24:09
∵E,F,G分别是AC,AB,BC的中点∴EF、FG分别的△ABC中位线∴EF∥BCFG=1/2AC∴四边形DEFG是梯形∵AD⊥BCE是Rt△ACD斜边AC的中点∴DE=1/2AC∴FG=DE∴四边
∵D是AB的中点,F是AC的中点∴DF‖BC设AC交DF于G点∵GF‖EC且F是AC的中点,∴G点是AE的中点∴FG=½EC同理,DG=½BE,又BE=EC,∴&frac1
连接BE,因为AB=BD,E还是AD的中点,所以BE垂直于AD又因为F是BC的中点,且在直角三角形中,最长边的中线等于其长度的一半所以EF=BC/2=5
△BDF中∠BFD+∠B+∠FDB=180∠FDE+∠EDC+∠FDB=180又因∠FDE=∠B所以∠EDC=∠BFDBD=CE,BF=CD也可得出△BDF与△CDE相似所以∠DEC=∠BDF在由△B
连接DE,EF△CDE面积为正方形的1/2△CEF面积为正方形的1/8△CDF,△BCE面积为正方形的1/4DG:GF=s△CDE:s△CEF=1/2:1/8=4:1s△CGF=4×4×1/4÷(4+
证明:∵点D,E,F分别是BC,AB,AC的中点,∴DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,又∵AD⊥BC,BD=CD,∴AB=AC,∴AE=AF,∴平行四边形AEDF是菱形.再问:为什
证明:∵DE是三角形的中位线∴DE‖且=1/2BC又∵CF=1/2BC∴DE=CF∵DE‖BC∴四边形DCFE为平行四边形∴DC=EF
DE、EF都是中位线,DE=EF=BF=BD=BC/2=BA/2四边相等且相互平行,四边形BDEF为菱形.
证明:因为点E,F,G分别是AB,BC,AC的中点,所以EG,EF是△ABC的中位线,所以EG∥BC,EF=AC/2,又AD垂直BC于点D,所以DG=AC/2(直角三角形斜边上的中线等于斜边的一半)所
延长FD到G,使得DG=DE.然后连接MG.那么因为∠ADE=∠CDF,∠ADG与∠CDF是对顶角.所以∠ADE=∠ADG.然后有他们的两个补角∠EDM=∠GDM,然后对于三角形EDM与三角形GDM由
DE//=BCGF//=BC==>DE//=GF==>平行四边形DEFG;AD=BC==>2EF=2GF==>EF=GF}==>菱形EFGH选【C】
先画好图下底的正方形为ABCD上底对应A'B'C'D'取DC中点G连接FGEG先求证平面FGE∥平面BB'D'D∵FG∥DD'EG∥BD(中位线定理)FG∩EG=GFG和EG在平面FGE上所以平面FG
因为点F是BE的四等分点所以三角形DEF的面积是三角形BED面积的四分之三所以三角形BED面积=30/四分之三=40平方厘米同理三角形ABD面积=40/三分之二=60平方厘米三角形ABC面积=60/二
不是(1)直观来看,若AB=AC,则H、D重合.(2)AB≠AC,由于D,E,F分别是BC,AC,AB的中点,得出DF平行且等于1/2AC,EH平行且等于1/2AB,EF平行且等于1/2BC;又有AB
E、F是所在边中点,所以EF//BC三角形AHB是直角三角形且F是AC中点,则FH=1/2AB=FB又D、E是所在边中点,所以DE=1/2AB且DE//FB所以DE=HF且DE不平行于FH由DE不平行
证明:首先ED//与FG,故DFGE是一个梯形,腰为EG、DF,因为EG为中位线,所以EG为AC之半所以EG=FA,又AD垂直BC,所以直角三角形ADC中,DF为斜边AC上的中线,因此为AC之半,即D
如图:1.向量运算的平行四边形法则 2.重心的性质, 1:2可得答案 A
连结EF、AE.证明:∵E、F分别为边BC、AC中点,∴EF为△ABC的中位线,EF‖AB(即可证:EF‖AD),EF=1/2AB,∵AD=1/2AB,∴EF=AD,∵在四边形ADFE中,EF‖AD,
证明:如图,∵D、E分别是BC、CA的中点,∴DE=12AB.又∵点F是AB的中点,AH⊥BC,∴FH=12AB,∴DE=HF.
其实只要做出图来很容易就可以看出E,F分别是BC,DC的中点,面ABCD是正方形,连接EF,可知EF∥∥正方体ABCD—A1B1C1D1中,BD∥B1D1,连接AB1,可以看出,AB1,AD1,B1D