在区间负无穷到正无穷上A (1 x^2)dx=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 06:53:50
在区间负无穷到正无穷上A (1 x^2)dx=1
f(x)=x平方-2ax+a在区间(负无穷,1)上有最小值,则函数g(x)=f(x)/x 在区间(1,正无穷)上一定

4f(x)=x^2-2ax+a在区间(-无穷大,1)上有最小值,但f(1)取不到,所以最小值为函数最低点ag(x)=x+a/x-2a若a0打钩函数当x>a^1/2时是增的x>1>a^1/2

计算积分(x^2/x^4+x^2+1)dx 积分区间是负无穷到正无穷

你学过复变函数吗?最好的办法是利用复变函数中的留数来计算.积分的围线选实轴上[-r,r]的线段和以r为半径,0

若函数f(x)在负无穷到正无穷上连续,当x趋向负无穷时和x趋向正无穷时f(x)的极限都存在,则函数f(x)一致连续.

已知定义在区间A上的函数f(x),如果对于任意给定的正数ε>0,存在一个实数ζ>0使得对任意A上的x1,x2且x1,x2满足|x1-x2|

如果函数y=ax三次方-x平方+x=5在负无穷到正无穷上单调递增,a的取值范围

y=ax三次方-x平方+x-5在负无穷到正无穷上单调递增说明它的导数y'=3ax^2-2x+1>0要使这个不等式成立,则要使二次函数y=3ax^2-2x+1与X轴没有交点,所以函数图象开口向上,且△<

求∫x/(1+x^2)dx在负无穷到正无穷上的定积分

反常积分,发散再问:谢谢!!!那这个要怎么证它发散啊???再答:原函数是(1/2)ln(1+x^2),在+∞的值是﹢∞,不是有限值,故广义积分发散。

∫dx/1+x² 求定积分 区间是负无穷到正无穷.

反常积分,I=arctanx|(-∞,+∞)=π/2-(-π/2)=π

证明函数f(x)=负x三次方+1在负无穷到正无穷上是减函数

证明f(x)=-x^3+1任意给定x10所以f(x)是减函数

判断并证明函数f(x)=-x三次方-x+1在负无穷到正无穷上的单调性

函数在R上为减函数,证明:由题意得该函数的导函数g(x)=一3x平方一1,因为一3小于0,所以g(x)函数图相开口向下,又因为b平方4ac=0一4(一3x一1)小于0,所以g(x)图相抛物线在x轴下方

若函数f(x)=a-1/(2的x次方-1)的定义在(负无穷,-1】U【1,正无穷)上是奇函数),则f(x

解析:已知函数f(x)在(负无穷,-1】U【1,正无穷)上是奇函数,则对于定义域内的任意实数x,都有:f(-x)=-f(x)即a-1/(2的-x次方-1)=-[a-1/(2的x次方-1)]a-2的x次

函数y=(x-1)3,求单调区间,想问下增区间是负无穷到正无穷 还是负无穷到1 和1到正无穷

如果上面要问的函数是y=(x-1)^3的话,楼主可作如下思考首先,可把y=(x-1)^3看作是将幂函数y=x^3在坐标系的图像整体向右移动一个单位.根据y=x^3在其定义域中的单调递增来看,y=(x-

说明函数Y=KX在区间(负无穷到正无穷)上是否有单调性

当K为正,单调增!当K为负,单调减!当K=0,无!

若函数y=(a的平方-1)的x次方在负无穷到正无穷上为减函数,则a取值范围?

定义域是R所以底数符合a²-1>0且不等于1是减函数则底数在0和1之间0

已知f(x)在区间正无穷到负无穷上是减函数,ab属于R,且a+b小于等于0,

因为a+b≤0∴a≤-b,b≤-a;又f(x)在(-∞,+∞)上是减函数∴f(a)≥f(-b)f(b)≥f(-a)两式相加:f(a)+f(b)≥f(-b)+f(-a)∴选最后一个.

用导数证明,(1)f(x)=e的x次方在区间(负无穷,正无穷)上是增函数

∵f'(x)=e^x当x∈R时,f'(x)>0∴f(x)=e^x在(-∞,+∞)上是增函数.

关于奇偶性的问题设函数f(x)在负无穷到正无穷上满足f(2-x)=f(2+x),f(7-x)=f(7+x) 且在闭区间【

(Ⅰ)由于f(2-x)=f(2+x),f(7-x)=f(7+x)可知f(x)的对称轴为x=2和x=7,即f(x)不是奇函数.联立f(2-x)=f(2+x)f(7-x)=f(7+x)推得f(4-x)=f

已知函数y=f(x)是定义在负无穷到正无穷上的奇函数,且在[0到正无穷]上为增函数

-3<f(2x+1)≤0f(-2)<f(2x+1)≤f(0),在[0到正无穷]上为增函数,得在负无穷到正无穷上为增函数,所以,-2<2x+1≤0-3

高一已知函数F(x)=a/2-2x/(2^x+1)证明函数fx在正无穷和负无穷区间上是增函数

首先,我们必须知道:指数函数y=2^x,是x轴上的单调增函数.在下面的步骤里,我们不用x1,x2等等,我们改用m