在四边形abcd中 ef为adab中点 cd=2 ef=4 bc=4根号2 ∠c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:38:22
在四边形abcd中 ef为adab中点 cd=2 ef=4 bc=4根号2 ∠c
(2013•枣庄一模)在如图所示的几何体中,四边形ABCD为矩形,EA⊥平面ABCD,EF∥AB,AB=4,AE=EF=

(1)设直线AC、BD相交于点O,连结OE、OG,∵矩形ABCD中,O是AC的中点,G为BC的中点∴OG是△ABC的中位线,可得OG=12AB且OG∥AB又∵EF∥AB,且EF=12AB,∴EF∥OG

(2014•湛江二模)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB

(1)证明:∵EF∥AB,FG∥BC,EG∥AC,∠ACB=90°,∴∠EGF=90°,△ABC∽△EFG.….(2分)∵AB=2EF,∴BC=2FG,连结AF,FG∥BC,FG=12BC,….(3分

已知:在四边形ABCD中,M,N,E,F分别为AD,BC,BD,AC的中点.求证:MN,EF互相平分

证明;连接ME,EN,NF,FM.点M,E分别为AD,BD的中点,则ME为三角形ABD的中位线.所以,ME∥AB;且ME=AB/2;同理:FN∥AB;且FN=AB/2;故:ME∥FN;且ME=FN.所

在如图所示的几何体中,四边形ABCD为平行四边形,∠ACD=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥A

证明:(Ⅰ)∵EF∥AB,FG∥BC,EG∥AC,∠ACB=90°,∴∠EGF=90°,△ABC~△EFG,由于AB=2EF,∴BC=2FG,连接AF,∵FG∥BC,FG=1/2BC,在▱

在如图所示的几何体中,四边形ABCD为正方形,EA⊥平面ABCD,EF//AB,AB=4,AE=2,EF

第一问,用相似推出MN=1,和EF平行且相等,有平行四边形EFNM,FN//EM,EM//面FBC.第二问.还有第三问,你确定这是高一的题么.好像要用到空间向量的说再问:这是高一的题呀。。空间向量在必

在如图所示的几何体中,四边形ABCD为四边形.∠ABC=45°,AB=AC=AE=2EF,EA⊥平面ABCD,EF∥AB

(1)设AC和BD的交点为O,因为MO//AB,GO//FB,所以面GOM//面ABFE(2)0再问:可不可以具体点、土的话我给你

在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,H为EF的中点,连接GH.求证:GH⊥EF

证明:因为:F为CD中点,G为AC中点,所以:FG//AD且FG=1/2AD.因为:E为AB中点,G为AC中点,所以:EG//BC且EG=1/2BC.因为:AD=BC所以:FG=EG在三角形EFG中,

1.在空间四边形ABCD中,E.F分别为AB.BC的中点.求证EF和AD为异面直线

假设EF和AD在同一平面内,则A,B,E,F在同1平面内;又A,E属于AB,∴AB在平面内,∴B在平面内,同理C在平面内故A,B,C,D属于平面,这与ABCD是空间四边形矛盾.∴EF和AD为异面直线.

已知:在四边形ABCD中,E,F分别为AB,CD的中点,求证:EF<(AC+BD).

连结AD中点O.连结OE、OF,则在三角形ADC中,有OF=AC/2,同理,在三角形ABD中,有OE=BD/2,而EF≤OE+OF=(AC+BD)/2,所以2EF≤AC+BD.(等号当O、E、F成一直

在多面体ABCDEF中,四边形ABCD为正方形,AB=2EF=2,EF平行AB,WF⊥FB,∠BEC=90°,BF=FC

(I)设AC与BD交于点G,则G为AC的中点.连EG,GH,由于H为BC的中点,故GH‖AB且GH=AB又EF‖AB且EF=AB∴EF‖GH.且EF=GH∴四边形EFHG为平行四边形.∴EG‖FH,而

如图所示,在空间四边形ABCD中,E,F,G,H分别为AB,BC,CD,DA上的一点,且EFGH为菱形,若AC‖平面EF

因为AC‖平面EFGH,且AC与EF共面所以AC‖EF同理BD‖EH因为AC‖EF所以BE:AB=EF:AC所以BE=AB*EF/AC=AB*EF/m因为BD‖EH所以AE:AB=EH:BD所以AE=

如图所示,在空间四边形ABCD中,E,F,G,H分别为AB,BC,CD,DA上的一点,且EFGH为菱形,如AC‖平面EF

因为AC‖平面EFGH,且AC与EF共面所以AC‖EF同理BD‖EH因为AC‖EF所以BE:AB=EF:AC所以BE=AB*EF/AC=AB*EF/m因为BD‖EH所以AE:AB=EH:BD所以AE=

关于四边形在平行四边形ABCD中,点E、F、G、H分别为四边的中点,顺次连接EF、FG、GH、HE,判断四边形EFGH的

∵△ABD中,E,H是AB和AD中点∴EH是△ABD的中位线∴EH∥BD,EH=1/2BD同理FG∥BD,FG=1/2BD∴EH∥FG,EH=FG∴平行四边形EHGF再问:不好意思,我提的问题下半部分

在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF,EF‖AB,H为BC的中点,

设AC与BD的交点为O,连接OH和OE因为H为BC的中点,O也为BD的中点,根据中位线定理可知OH平行且等于½DC,即OH平行且等于½AB,即OH平行且等于EF,所以平面O

如图一,在任意四边形ABCD中,E为AD中点,F为BC中点,证明:向量AB+向量DC=2向量EF

向量AB+BF+FE+EA=0(1)(注意向量箭头)向量DC+CF+FE+ED=0(2)上面两式相加,由于E,F分别为AD,BC中点,则向量BF+CF=0,EA+ED=0故向量AB+DC+2FE=0,

在平行四边形ABCD中,AC为对角线,EF垂直平分AC,交AC于O,证明四边形AFCE为菱形

因为平行四边形ABCD,所以AE平行FC又因为EF垂直平分所以AO=CO,角AOE=角COF=90度角EAC=角FCO所以三角形AOE全等三角形COF所以AE=CF所以平行四边形AECF又因为AE=E

在多面体ABCDEF中,四边形ABCD是正方形边长为1,EF=2,则该多面体的体积为

现在不方便画图,给你说一下思路吧:1、你可以把AB往两端各延长0.5、把CD也往两端各延长0.5,然后新端点分别跟E、F西点连接.这样,就可以得到一个三棱柱;三棱柱的体积可以用端面积乘以长来计算;2、

在四边形ABCD中,AD=AC,M,E,F分别为AB,BC,BD的点,MN⊥EF于N,求证:N为EF的中点

条件打错了吧?M、E、F分别为AB、BC、BD的中点么证明:连接ME、MFM为AB中点,E为BC中点,所以ME为△ABC中位线因此ME=AC/2M为AB中点,F为BD中点,所以MF为△ABD中位线因此

如图,在四边形ABCD中,直线EF经过其对角线的交点 ……

如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,(1)求证:△AOE≌△COF;(2)若AM:DM=2:3,△O