在定积分中从负无穷到正无穷上的值是1嘛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:13:53
∫x^4*e^(-x^2)dx=2∫x^4*e^(-x^2)dx(从0到+∞积分)=2∫t^2e^(-t)*1/[2√t]dt(设t=x^2)=∫t^(5/2-1)e^(-t)dt=Γ(5/2)=3/
x^2*e^(-x^2)dx=-(x/2)d(e^(-x^2))由上式用"分部积分公式",得到前面一部分是-(x/2)*(e^(-x^2))l上面正无穷,下面负无穷,这一项的值为零,后面一部分还是一个
简答如下:把-c到+c上的积分分成-c到x上的积分加上x到+c上的积分,这样的话,绝对值符号就可以打开了,求导得到f’’(x)=2g(x)>0,所以y=f(x)向上凹.
e的(-x)次方从负无穷到0的定积分是-1/2+1/2*e(无穷次方)即:正无穷从答案上来看原函数应为:F(x)=(1/2)[∫e^(x)dx(积分下限为负无穷,上限为0)]+(1/2)[∫e^(-x
F'(x)=(cosx-2x)f(x)F‘(0)=(1-0)f(0)=2再问:为什么是(cosx-2x),而不是(2x-cosx)你看题干上写的是“x平方到sinx”,这个地方有些不懂再答:x平方是下
^^你知道正态分布吧f(x)=[1/√(2pi)]*exp(-x^2)EX=0DX=1EX^2=DX+(EX)^2=1=∫x^2f(x)dx从负无穷到正无穷所以∫x^2*[1/√(2pi)]*exp(
I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]=∫∫e^(-x^2-y^2)dxdy转化成极坐标=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]=2π*[(-1/2)e^
反常积分,发散再问:谢谢!!!那这个要怎么证它发散啊???再答:原函数是(1/2)ln(1+x^2),在+∞的值是﹢∞,不是有限值,故广义积分发散。
首先积分只有在a>0时有意义由于对称性从负无穷到正无穷对e^-at^2=2从0到正无穷对e^-at^2=2∫e^(-at^2)dt[∫e^(-at^2)dt]^2=∫e^(-ax^2)dx∫e^(-a
反常积分,I=arctanx|(-∞,+∞)=π/2-(-π/2)=π
∫dx/(1+x^4)=(1/2)[∫(1+x²)dx/(1+x^4)+∫(1-x²)dx/(1+x^4)].分子分母同除于x²=(1/2){∫[(1/x²)+
求原函数.再问:求详解
表示Imaginaryerrorfunction,定义为:erfi(x)=-ierf(ix)=2/√π*∫(0→x)e^(t^2)dt(其实我也不懂是干什么的……)具体的可以查help
你看题目,是不是 x<0时,f(x)=0 所以在负无穷到0积分值为0 就直接从0到正无穷积分
不就是1啦原函数为e^xx=0e^0=1x=-infe^-inf=0所以为1
-3<f(2x+1)≤0f(-2)<f(2x+1)≤f(0),在[0到正无穷]上为增函数,得在负无穷到正无穷上为增函数,所以,-2<2x+1≤0-3
∫dx/x²=-1/x+Cx→+∞,则-1/x→0x→0,则-1/x→∞即x→0时极限不存在所以这个广义积分不存在