在平方四边形abce中,ef是对角线ac上的亮点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:09:03
我觉得题目应该是“在平行四边形ABCD中”证明;CD的垂直平分线EF交AD于点E,交CD于点F所以EC=ED,ABCD是平行四边形,角B=60度所以角D=60度,即三角形ECD为等边三角形所以EC=C
解题思路:(Ⅰ)连接AC交BD于点H,连接GH.利用线面平行的性质定理及三角形中位线定理可得结论;(Ⅱ)以O为原点建立空间直角坐标系O-xyz所求值即为平面ABF的法向量与平面ADF的法向量的夹角的余
证明:因为:F为CD中点,G为AC中点,所以:FG//AD且FG=1/2AD.因为:E为AB中点,G为AC中点,所以:EG//BC且EG=1/2BC.因为:AD=BC所以:FG=EG在三角形EFG中,
在三角形ABC中E,G中点,得到EG平行于BC且EG=BC/2,同理在三角形ACD中得到GF=AD/2,由于AD=BC,可以得到EG=GF,且H是EF中点,在三角形EGF中可以得到GH垂直于EF.(重
分析:先证明四边形ACED是平行四边形,可得DE=AC=2.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.∵∠ACB=90°,DE⊥BC,∴AC∥DE.又∵CE∥AD,∴四边
证明:因为△AEC是由△ADC沿AC对折后得到,所以这两个三角形全等!即△ADC≌△AEC.可得四边形ADCE为菱形(因为这是菱形的特征),其中AC为对角线也就是角平分线.所以得到∠EAD=∠ECD,
设AC与BD的交点为O,连接OH和OE因为H为BC的中点,O也为BD的中点,根据中位线定理可知OH平行且等于½DC,即OH平行且等于½AB,即OH平行且等于EF,所以平面O
根据中位线的定义,EF//BC,且EF=1/2BC,由于AD是中线,则BD=CD,已知BH=CG,所以HD=DG,所以HD+DG=BD+CD=1/2BC,根据平行四边形定理,一组对边平行且相等,就可以
11你可以这样做三角形BFC和三角形CEF面积之比为6:4,就是BF:EF=6:4(它们是同高的两个三角形)再看三角形ABF和三角形CEF,BF:EF和AF:FC是相同的即也为6:4,所以这两个三角形
EF⊥FB,∠BFC=90°,∴BF⊥面EFCD∠DFC是二面角D-BF-C的平面角.设AB=2,则DC=2FC=√2﹙⊿BFC等腰直角﹚∠DCF=90º∴tan∠DFC=2/√2=√2⑵作
因为相似,所以BC:EF=EF:GH=GH:AD.其中已知BC=1,AD=8.等比数列,可以得到EF=2,GH=4.
小学就这样做吧如图连接DE、AF记DEF面积为甲,AEF面积为乙因为E是中点,所以AEF面积和EBF面积相等为1(等底等高)DFC面积加上DEF面积等于长方形面积一半DFC面积加上AFB面积也等于长方
因AD平行BC所EF:FC=DF:FB=DE:BC=1:2三角形DEF面积:三角形DFC面积=EF:FC=1:2得三角形DFC面积=2三角形DFC面积:三角形BFC面积=DF:FB=1:2得三角形BF
因为ABCD为矩形,EF分别是AB,CD的中点所以AE//DF且AE=DF所以AEFD为平心四边形又因为角A=90°所以AEFD为矩形
(I)设AC与BD交于点G,则G为AC的中点.连EG,GH,由于H为BC的中点,故GH‖AB且GH=AB又EF‖AB且EF=AB∴EF‖GH.且EF=GH∴四边形EFHG为平行四边形.∴EG‖FH,而
延长DA、CB相较于点G.因为CE平分∠BCD,且CE⊥AD,所以△CDG是等腰三角形,CD=CG,GE=DE∵DE=3AE∴GA=GE-AE=DE-AE=2AE,GD=GE+DE=6AE∴GD=3G
连接BD和AC交于M.AM=CMBM=DMAE=CF所以EM=FM所以EF、BD互相平分所以是平行四边形
再问:△ABE≌△DFC()后面括号里填什么再答:边角边定理忘了怎么用字母表示了再问:��SAS��再答:Ӧ���ǵġ���