在平行四边形ABCD中,M,N分别是AO,OC的中点,求证bm平行dn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:22:42
在平行四边形ABCD中CD=AB,CD∥AB∵M,N分别是AB,CD的中点∴CN=AM∵CD∥AB∴∠NCE=∠MAF∵AE=CF∴AE+EF=CF+EF即AF=CE∴⊿AMF≌⊿CNE﹙SAS﹚∴M
∵四边形ABCD是平行四边形∴AD=BC,又∵AE=CF∴AD-AE=BC-CF即DE=BF∵DE∥BF∴四边形BEDF是平行四边形∴BE=DF∴M、N分别是BE、DF的中点∴EM=BE/2=DF/2
∵平行四边形ABCD∴AB=CD,AB‖CD∵AE=CF∴AB-AE=CD-CF即BE=DFBE‖DF∴四边形BEDF为平行四边形∴DE‖BF,BE=BF因为:M、N分别是DE、BF的中点∵ME=FN
你是说求证MFNE是平行四边形吗?证明:∵四边形ABCD是平行四边形.∴AD=CB,∠A=∠C,AB=CD又∵AE=CF∴ΔADE≌ΔCBF(SAS)∴DE=BF∵AB=CD 又∵AE=CF∴BE=
解题思路:先证明四边形是平行四边形,再根据平行四边形和角平分线的性质可得AB=BE,AB=AF,AF=BE,从而证明四边形ABEF是菱形解题过程:证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠
∵AB∥CD∴△ABN∽△MDN∴AN:MN=AB:MD=2:1∴S△DMN:S△ADN=1:2,即S△DMN=13S△ADM又S△ADM=14S▱ABCD故S△DMN:S▱ABCD=1:12.故选A
MN和EF相互平分,连接EM、MF、FN、NE因:AE=CFAN=AB-BNCM=CD-DMAB=CDBN=DMAN=CM角A=角C所以:三角形AEN与三角形CFM全等EN=FM同理可证:EM=NF所
四边形BMDN是平行四边形证明如下:连接BD交AC于点O∵ABCD是平行四边形∴BO=DO,AO=CO∵AM=CN∴OM=ON∴四边形BMDN是平行四边形(对角线互相平分的四边形是平行四边形)
∵四边形ABCD是平行四边形AD‖BC,AD=BC又∵点M,N是ED,BF的中点,AE=CF∴EM=NF∴四边形MFNE是平行四边形(对边平行且相等的四边形是平行四边行)
因为ABCD是平行四边形,∴AB=CD,AB∥CD∵AE=CF,AB∥CD∴BE=DF,BE∥DF∴DEBF是平行四边形∴DE=BF,DE∥DF∵M.N分别是DE.BF的中点,DE∥DF∴ME=NF,
通过角边角定理得到△DAE与△BCF全等,所以DE=BF,M、N分别是DE、BF中点,所以ME=NF,而DF平行且等于BE,得出四边形DFBE为平行四边形,得到ME与NF平行,所以ME平行且等于NF,
有,因为平行四边形ABCD,AE=CF,所以BE=DF得到EBFD为平行四边形,即BF//DE,只要证明EM=FN既可以了.通过面积相等原则可得AM=FN,有勾股定理可得EM=FN,大体意思就是这样,
∵是平行四边形∴BE//DF又BE=DF∴BEDF是平行四边形∴BF//DE且BF=DE∵M,N分别是中点∴NF=ME且NF//ME∴四边形ENFM为平行四边形
∵ABCD为平行四边形∴AB=CD.AB∥CD∵AE=CF∴ED=BF∵AB∥CD∴EDBF为平行四边形∴BE=DF,BE∥DF∵M.N分别是BE.DF的中点∴EM=FN∵BE∥DF∴MENF是平行四
手机答题,字数限制.第一题:证明三角形ABN全等三角形DCM得AN=CM.又因为AM=NC.所以ANCM为平行四边行第2题:证明三角形AED全等三角形CFB得BF=DE.NF=ME再证明三角形AEN和
在△BON与△MOD中,ON=OM;BO=OD,角BON=MOD(对顶角相等),所以△BON与△MOD全等,则角NBO=MDO,所以BN//MD,同理证明:在△BOM与△NOD全等,BM//ND,所以
题目错啦,角B和角D是平行四边形对角,应该相等.如果角D等于2倍角A或2倍角C,那么该平行四边形为一锐角是60度的菱形,因此AB=4.哈哈,选我选我~
因AM=1/2AD,NC=1/2BC,而AD=BC,所以AM//=NC,故ANCM为平行四边形
第四个明显不对啊如果对的话,那么S三角形ADP=1/2*S三角形ADB也就是说P为BD中点了DN:AB=1:2所以DP:PB=1:2PB=PQ+BQ同理BQ:DQ=1:2DQ=DP:PQ通过上面两个比
连接BD.因为N,E是BC,DC的中点.在三角形BCD中.NE平行BD,2NE=BD.在三角形ADB中,M.F是AD,AB中点,FM平行BD,2FM=BD,所以FM平行NE,FM=NE;所以四边形FN